Skip to main content
Log in

Concrete carbonation prediction based on air-permeability tests with moisture compensation

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Predicting carbonation resistance via early site tests is crucial for controlling the longevity and durability of concrete structures. Therefore, this study aimed to provide a nondestructive approach for predicting carbonation resistance utilizing in situ air-permeability and surface moisture measurements. The Torrent air-permeability method, coupled with surface moisture measurements by the electrical impedance method, was applied to 25 specimens produced using different cement types, water-to-binder ratios, and curing periods to obtain test data at various ages from 1 to 18 months; the carbonation depths were measured at 6, 12 and 18 months. To overcome the challenge of the moisture effect on measured values during the drying process, the kT5 indicator, permeability coefficient at the reference moisture of 5.0% was utilized. Strong correlations between kT5 and the carbonation rates were obtained that allowed the latter's prediction from tests of air-permeability and surface moisture performed at relatively early ages (e.g., 1 or 3 months). Guidance on the procedure is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Committee 318 ACI (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute

  2. Long AE, Henderson GD, Montgomery FR (2001) Why assess the properties of near-surface concrete? Constr Build Mater 15:65–79. https://doi.org/10.1016/S0950-0618(00)00056-8

    Article  Google Scholar 

  3. Basheer PAM, Nolan É (2001) Near-surface moisture gradients and in situ permeation tests. Constr Build Mater 15:105–114. https://doi.org/10.1016/S0950-0618(00)00059-3

    Article  Google Scholar 

  4. Mahdikhani M, Bamshad O, Fallah Shirvani M (2018) Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Constr Build Mater 167:929–935. https://doi.org/10.1016/j.conbuildmat.2018.01.137

    Article  Google Scholar 

  5. Neves R, Torrent R, Imamoto K (2018) Residual service life of carbonated structures based on site non-destructive tests. Cem Concr Res 109:10–18. https://doi.org/10.1016/j.cemconres.2018.04.002

    Article  Google Scholar 

  6. Ahmad S (2003) Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement Concr Compos 25:459–471. https://doi.org/10.1016/S0958-9465(02)00086-0

    Article  Google Scholar 

  7. Parrott LJ (1994) Moisture conditioning and transport properties of concrete test specimens. Mater Struct 27:460–468. https://doi.org/10.1007/BF02473450

    Article  Google Scholar 

  8. Basheer L, Kropp J, Cleland DJ (2001) Assessment of the durability of concrete from its permeation properties: a review. Constr Build Mater 15:93–103. https://doi.org/10.1016/S0950-0618(00)00058-1

    Article  Google Scholar 

  9. Mather B (2004) Concrete durability. Cement Concr Compos 26:3–4. https://doi.org/10.1016/S0958-9465(02)00122-1

    Article  Google Scholar 

  10. Yokoyama Y, Nakarai K, Sakai Y, Kishi T (2021) Influences of moisture change and pore structure alteration on transport properties of concrete cover. Cement Concr Compos 122:104090. https://doi.org/10.1016/j.cemconcomp.2021.104090

    Article  Google Scholar 

  11. Neville AM (2011) Properties of concrete, 5th edn. Pearson, London

    Google Scholar 

  12. Malhotra VM, Carino NJ (2003) Handbook on nondestructive testing of concrete. CRC Press, London

    Book  Google Scholar 

  13. Maierhofer C, Reinhardt H-W, Dobmann G (2010) Non-destructive evaluation of reinforced concrete structures: non-destructive testing methods. Elsevier, London

    Book  Google Scholar 

  14. Schonlin K, Hilsorf HK (1988) Permeability as a measure of potential durability of concrete–development of a suitable test apparatus. Special Publ 108:99–116. https://doi.org/10.14359/3608

    Article  Google Scholar 

  15. Torrent RJ (1992) A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct 25:358–365. https://doi.org/10.1007/BF02472595

    Article  Google Scholar 

  16. Basheer PAM, Andrews RJ, Robinson DJ, Long AE (2005) ‘PERMIT’ ion migration test for measuring the chloride ion transport of concrete on site. NDT & E Int 38:219–229. https://doi.org/10.1016/j.ndteint.2004.06.013

    Article  Google Scholar 

  17. Yang K, Basheer PAM, Magee B, Bai Y (2013) Investigation of moisture condition and Autoclam sensitivity on air permeability measurements for both normal concrete and high performance concrete. Constr Build Mater 48:306–314. https://doi.org/10.1016/j.conbuildmat.2013.06.087

    Article  Google Scholar 

  18. Yang K, Basheer PAM, Bai Y et al (2014) Development of a new in situ test method to measure the air permeability of high performance concretes. NDT and E Int 64:30–40. https://doi.org/10.1016/j.ndteint.2014.02.005

    Article  Google Scholar 

  19. R.J. Torrent, L. Fernández (Eds.), Non-destructive evaluation of the penetrability and thickness of the concrete cover, RILEM TC 189 NEC, RILEM Report 40 (2007) 223

  20. Sn 505 262/1 Construction en béton—Spécifications complémentaires, Annexe E: perméabilité à l’air dans les structures SSIA, Switzerland (2013)

  21. Andrade C, Gonzalez-Gasca C, Torrent R (2000) Suitability of torrent permeability tester to measure air-permeability of covercrete. pp 301–317

  22. Neves R, da Fonseca BS, Branco F et al (2015) Assessing concrete carbonation resistance through air permeability measurements. Constr Build Mater 82:304–309. https://doi.org/10.1016/j.conbuildmat.2015.02.075

    Article  Google Scholar 

  23. Nguyen MH, Nakarai K, Nishio S (2019) Durability index for quality classification of cover concrete based on water intentional spraying tests. Cement Concr Compos 104:103355. https://doi.org/10.1016/j.cemconcomp.2019.103355

    Article  Google Scholar 

  24. Torrent R (2013) Service life prediction: theorecrete, labcrete and realcrete approaches Keynote Paper. In: SCTM3 conference, Kyoto, Japan, pp. 18–21 August

  25. Chen W, Liu J, Brue F et al (2012) Water retention and gas relative permeability of two industrial concretes. Cem Concr Res 42:1001–1013. https://doi.org/10.1016/j.cemconres.2012.04.003

    Article  Google Scholar 

  26. Jacobs F (1998) Permeability to gas of partially saturated concrete. Mag Concr Res 50:115–121. https://doi.org/10.1680/macr.1998.50.2.115

    Article  Google Scholar 

  27. Romer M (2005) Effect of moisture and concrete composition on the torrent permeability measurement. Mat Struct 38:541. https://doi.org/10.1007/BF02479545

    Article  Google Scholar 

  28. Torrent R (2012) Non-destructive air-permeability measurement: from gas-flow modelling to improved testing. Paper 151, Microdurability 2012, Amsterdam, pp. 11–13

  29. Torrent R, Ebensperger L (1993) Studie über methoden zur messung und beurteilung der Kennwerte des Überdeckungsbetons auf der Baustelle. Office Fédéral des Routes, Rapport No. 506, Bern, Suisse

  30. Misák P, Kucharczyková B, Vymazal T, et al (2010) Determination of the quality of the surface layer of concrete using the TPT method and specification of the impact of humidity on the value of the air permeability coefficient

  31. Nguyen MH, Nakarai K, Kai Y, Nishio S (2020) Early evaluation of cover concrete quality utilizing water intentional spray tests. Constr Build Mater 231:117144. https://doi.org/10.1016/j.conbuildmat.2019.117144

    Article  Google Scholar 

  32. Torrent R, Bueno V, Moro F, Jornet A (2019) Suitability of impedance surface moisture meter to complement air-permeability tests. In: RILEM PRO 128, durability, monitoring and repair of structures, pp 56–63

  33. Nakarai K, Shitama K, Nishio S et al (2019) Long-term permeability measurements on site-cast concrete box culverts. Constr Build Mater 198:777–785. https://doi.org/10.1016/j.conbuildmat.2018.11.263

    Article  Google Scholar 

  34. Jacobs F, Denarié E, Leemann A, and Teruzzi T, (2009) Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen, Office Fédéral des Routes, VSS Report 641, December 2009, Bern, Switzerland, 53 p

  35. Torrent R, Denarié E, Jacobs F et al (2012) Specification and site control of the permeability of the cover concrete: the Swiss approach. Mater Corros 63:1127–1133. https://doi.org/10.1002/maco.201206710

    Article  Google Scholar 

  36. Jacobs F, Denarie E, Leemann A, Teruzzi T (2009) Empfehlungen zur Qualitätskontrolle von Beton mit Luftpermeabilitätsmessungen. Forschungsauftrag AGB 2007/007. Office Fédéral des Routes, VSS Report 641 (2010), Zürich, Switzerland. Transl. (Chapters 1 and 2), R. Torrent. Recommendations for quality control of concrete with air-permeability measurements. Buenos Aires, Argentina. www.m-a-s.com.ar. 26 Sept 2011

  37. Starck S, Beushausen H, Alexander M, Torrent R (2017) Complementarity of in situ and laboratory-based concrete permeability measurements. Mater Struct 50:177. https://doi.org/10.1617/s11527-017-1037-3

    Article  Google Scholar 

  38. Bueno V, Nakarai K, Nguyen MH et al (2021) Effect of surface moisture on air-permeability kT and its correction. Mater Struct 54:89. https://doi.org/10.1617/s11527-021-01666-1

    Article  Google Scholar 

  39. Neves R, Branco F, de Brito J (2012) About the statistical interpretation of air permeability assessment results. Mater Struct 45:529–539. https://doi.org/10.1617/s11527-011-9780-3

    Article  Google Scholar 

  40. Nguyen MH, Nakarai K, Torrent R (2020) Service life prediction of steam-cured concrete utilizing in-situ air permeability measurements. Cement Concr Compos 114:103747. https://doi.org/10.1016/j.cemconcomp.2020.103747

    Article  Google Scholar 

  41. Nguyen MH, Nishio S, Nakarai K (2022) Effect of temperature on nondestructive measurements for air permeability and water sorptivity of cover concrete. Constr Build Mater 334:127361. https://doi.org/10.1016/j.conbuildmat.2022.127361

    Article  Google Scholar 

  42. Japanese Industrial Standards, JIS R 5210, Portland cement, (2009)

  43. Japanese Industrial Standards, JIS R 5211, Portland blast-furnace slag cement, (2009)

  44. ASTM F2659 Standard guide for preliminary evaluation of comparative moisture condition of concrete, gypsum cement and other floor slabs and screeds using a non-destructive electronic moisture meter, ASTM International, West Conshohocken (2015)

  45. Torrent R, Moro F, Jornet A (2013) Coping with the effect of moisture on air permeability measurements. RILEM international work performance-based specific control concrete durability, pp 489–498

  46. Torrent R, Frenzer G (1995) A method for rapid determination of the coefficient of permeability of the “covercrete,”. In: International Symposium on Non-Destructive Testing in Civil Engineering, pp. 985–992

  47. Belgacem ME, Neves R, Talah A (2020) Service life design for carbonation-induced corrosion based on air-permeability requirements. Constr Build Mater 261:120507. https://doi.org/10.1016/j.conbuildmat.2020.120507

    Article  Google Scholar 

  48. Bonnet S, Balayssac J-P (2018) Combination of the Wenner resistivimeter and Torrent permeameter methods for assessing carbonation depth and saturation level of concrete. Constr Build Mater 188:1149–1165. https://doi.org/10.1016/j.conbuildmat.2018.07.151

    Article  Google Scholar 

  49. Japanese Standards Association (2011) JIS A 6204:2011, Chemical admixtures for concrete

Download references

Acknowledgements

The experiments were supported by Mr. Toshikazu Matsuyama and students, especially Mr. Daiki Yamamoto, from the Structural Engineering Laboratory of Hiroshima University. The authors are grateful for the assistance provided.

Funding

This research was financially supported by the Chugoku Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Nakarai.

Ethics declarations

Conflict of interest

Author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 3 shows the carbonation depth and carbonation rate of the concrete specimens used in this study.

Table 3 Carbonation depth and carbonation rate of the concrete specimens used in this study

Appendix 2

The procedure to calculate kT5 from single and multiple (double, triple, and accumulated) measurement ages can be assessed by the following equation:

$${kT}_{5}=\sqrt[n]{{kT}_{\mathrm{5,1}}\times {kT}_{\mathrm{5,3}}\times \dots \times {kT}_{5,i}}$$
(B1)

where \({kT}_{5,i}\) is a value calculated at i-th measurement, utilizing Eqs. (2) and (3); \({kT}_{5}\) is the geometric mean value of \({kT}_{5,i}\) values; n is the total number of measurements (1 for kT5 at single age, 2 for kT5 at double ages, 3 for kT5 at triple ages, and 5 for kT5 at accumulated ages).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.H., Nakarai, K., Torrent, R.J. et al. Concrete carbonation prediction based on air-permeability tests with moisture compensation. Mater Struct 56, 3 (2023). https://doi.org/10.1617/s11527-022-02081-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02081-w

Keywords

Navigation