Skip to main content
Log in

A mixed-mode E-FEM approach for the study of local fracture processes in heterogeneous quasi-brittle materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper studies the use of the Embedded Finite Element Method (E-FEM) for the numerical modelling of triaxial fracture processes in non-homogeneous quasi-brittle materials. The E-FEM framework used in this study combines two kinematics enhancements: a weak discontinuity allowing the model to account for material heterogeneities and a strong discontinuity allowing the model to represent local fractures. The strong discontinuity features enriched fracture kinematics that allow the modelling of all typical fracture modes in three dimensions. A brief review is done of past work using similar enriched finite element frameworks to approach this problem. The work continues by establishing the theoretical basis of each kind of discontinuity formulation and their superposition through the Hu-Washizu variational principle. Three groups of numerical simulations are presented afterwards for discussing the performance of this combined E-FEM model: homogeneous sample simulations, simple heterogeneous sample simulations and simulations considering a realistic heterogeneous morphology coming from an actual concrete sample. Comparisons are made with another E-FEM model considering a single local fracture mode approach and with previous experimental data. A concluding statement is made on the benefits and challenges identified for the E-FEM framework in this kind of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alfaiate J, Simone A, Sluys L (2003) Non-homogeneous displacement jumps in strong embedded discontinuities. Int J Solids Struct 40:5799–5817. https://doi.org/10.1016/S0020-7683(03)00372-X

    Article  MATH  Google Scholar 

  2. Benkemoun N, Hautefeuille M, Colliat JB, Ibrahimbegovic A (2010) Failure of heterogeneous materials: 3d meso scale fe models with embedded discontinuities. Int J Numer Method Eng 82:1671–1688. https://doi.org/10.1002/nme.2816

    Article  MATH  Google Scholar 

  3. Chateau C, Nguyen TTT, Bornert M, Yvonnet J (2018) DVC-based image subtraction to detect microcracking in lightweight concrete. Strain 54:e12276. https://doi.org/10.1111/str.12276

    Article  Google Scholar 

  4. Contrafatto L, Cuomo M, Tommaso G, Venti, D (2013) Computational issues in the finite element with embedded discontinuity method based on non-homogenous displacement jump. 10.13140/2.1.2466.4320. pp 17–20

  5. Dias-da Costa D, Alfaiate J, Sluys L, Areias P, Júlio E (2013) An embedded formulation with conforming finite elements to capture strong discontinuities. Int J Numer Methods Eng 93:224–244. https://doi.org/10.1002/nme.4393

    Article  MathSciNet  MATH  Google Scholar 

  6. Cusini M, White JA, Castelletto N, Settgast RR (2021) Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures. Int J Numer Analyt Method Geomech 45:563–584. https://doi.org/10.1002/nag.3168

    Article  Google Scholar 

  7. Dominguez N, Brancherie DM, Davenne L, Ibrahimbegović A (2005) Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bond-slip of reinforcement model. Eng Comput 22:558–582

    Article  Google Scholar 

  8. Dujc J, Brank B, Ibrahimbegovic A, Brancherie D (2010) An embedded crack model for failure analysis of concrete solids. Comput Concr. 7: 331

    Article  Google Scholar 

  9. Essongue S, Couégnat G, Martin E (2021) Finite element modelling of traction-free cracks: Benchmarking the augmented finite element method (afem). Eng Fract Mech 253:107873. https://doi.org/10.1016/j.engfracmech.2021.107873

    Article  Google Scholar 

  10. Fish J, Shek K (2000) Multiscale analysis of composite materials and structures. Compos Sci Technol 60:2547–2556. https://doi.org/10.1016/S0266-3538(00)00048-8

    Article  Google Scholar 

  11. Freeman BL, Bonilla-Villalba P, Mihai IC, Alnaas WF, Jefferson AD (2020) A specialised finite element for simulating self-healing quasi-brittle materials. Adv Model Simulat Eng Sci. https://doi.org/10.1186/s40323-020-00171-4

    Article  Google Scholar 

  12. Gálvez J, Planas J, Sancho J, Reyes E, Cendón D, Casati M (2013) An embedded cohesive crack model for finite element analysis of quasi-brittle materials. Eng Fract Mech 109:369–386. https://doi.org/10.1016/j.engfracmech.2012.08.021

    Article  Google Scholar 

  13. Hauseux P, Roubin E, Colliat JB (2017) The embedded finite element method (e-fem) for multicracking of quasi-brittle materials. In: Shojaei AK, Shao J (eds) Porous Rock Fracture Mechanics. Woodhead Publishing, Sawston, pp 177–196

    Chapter  Google Scholar 

  14. Huang J, Chen M, Sun J (2014) Mesoscopic characterization and modeling of microcracking in cementitious materials by the extended finite element method. Theoret Appl Mech Lett 4:041001. https://doi.org/10.1063/2.1404101

    Article  Google Scholar 

  15. Ibrahimbegovic A, Melnyk S (2007) Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: An alternative to extended finite element method. Computat Mech 40:149–155. https://doi.org/10.1007/s00466-006-0091-4

    Article  MATH  Google Scholar 

  16. Ibrahimbegovic A, Wilson EL (1991) A modified method of incompatible modes. Commun Appl Numer Methods 7:187–194. https://doi.org/10.1002/cnm.1630070303

    Article  MATH  Google Scholar 

  17. Idelsohn SR, Gimenez JM, Nigro NM (2018) Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space. Int J Numer Methods Fluids 86:750–769. https://doi.org/10.1002/fld.4477

    Article  MathSciNet  Google Scholar 

  18. Jirásek M (2000) Comparative study on finite elements with embedded cracks. Comput Methods Appl Mech Eng 188:307–330. https://doi.org/10.1016/S0045-7825(99)00154-1

    Article  MATH  Google Scholar 

  19. Jirásek M, Zimmermann T (2001) Embedded crack model. part ii: combination with smeared cracks. Int J Numer Methods Eng 50:1291–1305. https://doi.org/10.1002/1097-0207(20010228)50:61291::AID-NME123.0.CO;2-Q

    Article  MATH  Google Scholar 

  20. Kakarla SSHS (2020) From anisotropic damage to multiple cracks by coupling a microplane model and a strong discontinuity formulation in the Embedded Finite Element Method. Ph.D. thesis Université Paris Saclay - ENS Paris Saclay. https://tel.archives-ouvertes.fr/tel-03197956

  21. Laborin AO, Roubin E, Malecot Y, Daudeville L (2021) An analysis of embedded weak discontinuity approaches for the finite element modelling of heterogeneous materials. Subm Int J Numer Methods Eng. https://doi.org/10.31224/osf.io/4cmdk

    Article  Google Scholar 

  22. Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433. https://doi.org/10.1002/nme.2042

    Article  MathSciNet  MATH  Google Scholar 

  23. Linder C, Zhang X (2014) Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Comput Methods Appl Mech Eng 273:143–160. https://doi.org/10.1016/j.cma.2014.01.021

    Article  MATH  Google Scholar 

  24. Lu M, Zhang H, Zheng Y, Zhang L (2017) A multiscale finite element method for the localization analysis of homogeneous and heterogeneous saturated porous media with embedded strong discontinuity model. Int J Numer Methods Eng 112:1439–1472. https://doi.org/10.1002/nme.5564

    Article  MathSciNet  Google Scholar 

  25. Markovic D, Niekamp R, Ibrahimbegovic A, Matthies H, Taylor R (2005) Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part i - physical and mathematical aspects. Eng Comput Int J Comput Aided Eng 22:664–683. https://doi.org/10.1108/02644400510603050

    Article  MATH  Google Scholar 

  26. Nguyen TT, Yvonnet J, Bornert M, Chateau C (2016) Initiation and propagation of complex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing- microct experiments and phase field simulations. J Mech Phys Solids. https://doi.org/10.1016/j.jmps.2016.06.004

    Article  Google Scholar 

  27. Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: fundamentals. Int J Numer Methods Eng. 39:3575–3600. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:213575:AID-NME653.0.CO;2-E

    Article  MATH  Google Scholar 

  28. Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation. Int J Numer Methods Eng. 39:3601–3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:213575:AID-NME653.0.CO;2-E

    Article  Google Scholar 

  29. Ortega Laborin A, Roubin E, Malecot Y, Daudeville L (2021) General consistency of strong discontinuity kinematics in embedded finite element method (e-fem) formulations. Materials. https://doi.org/10.3390/ma14195640

    Article  Google Scholar 

  30. Ortiz M, Leroy Y, Needleman A (1987) A finite element method for localized failure analysis. Comput Methods Appl Mech Eng 61:189–214. https://doi.org/10.1016/0045-7825(87)90004-1

    Article  MATH  Google Scholar 

  31. Peng Y, Chen X, Ying L, Chen Y, Zhang L (2019) Mesoscopic numerical simulation of fracture process and failure mechanism of concrete based on convex aggregate model. Adv Mater Sci Eng 2019:1–17. https://doi.org/10.1155/2019/5234327

    Article  Google Scholar 

  32. Peng Y, Liu Y (2019) Advances in the Base Force Element Method. Springer, Singapore. https://doi.org/10.1007/978-981-13-5776-3

    Book  Google Scholar 

  33. Raina A, Linder C (2010) Modeling crack micro-branching using finite elements with embedded strong discontinuities. PAMM 10:681–684. https://doi.org/10.1002/pamm.201010328

    Article  Google Scholar 

  34. Rémond Y, Ahzi S, Baniassadi M, Garmestani H (2016) Homogenization of Reconstructed RVE. John Wiley & Sons. Ltd. chapter 6:133–168. https://doi.org/10.1002/9781119307563.ch6

    Article  Google Scholar 

  35. Roubin E, Vallade A, Benkemoun N, Colliat JB (2015) Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method. Int J Solids Struct 52:180–196

    Article  Google Scholar 

  36. Salagame R, Belegundu A (1994) Distortion, degeneracy and rezoning in finite elements - a survey. Sadhana - Acad Proceed Eng Sci 19:311–335. https://doi.org/10.1007/BF02811901

    Article  MathSciNet  MATH  Google Scholar 

  37. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng. 29:1595–1638. https://doi.org/10.1002/nme.1620290802

    Article  MathSciNet  MATH  Google Scholar 

  38. Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Computat Mech 42:239–250. https://doi.org/10.1007/s00466-007-0210-x

    Article  MATH  Google Scholar 

  39. Stamati O, Andò E, Roubin E, Cailletaud R, Wiebicke M, Pinzon G, Couture C, Hurley RC, Caulk R, Caillerie D, Matsushima T, Bésuelle P, Bertoni F, Arnaud T, Laborin AO, Rorato R, Sun Y, Tengattini A, Okubadejo O, Colliat JB, Saadatfar M, Garcia FE, Papazoglou C, Vego I, Brisard S, Dijkstra J, Birmpilis G (2020) ‘spam‘: Software for practical analysis of materials. J Open Sour Soft 5:2286. https://doi.org/10.21105/joss.02286

    Article  Google Scholar 

  40. Stamati O, Roubin E, Andò E, Malecot Y (2018) Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography. Cement and Concrete Composites 88:8–16

    Article  Google Scholar 

  41. Stamati O, Roubin E, Andò E, Malecot Y (2019) Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of x-ray tomography. Meccanica 54:707–722. https://doi.org/10.1007/s11012-018-0917-0

    Article  Google Scholar 

  42. Stamati O, Roubin E, Andò E, Malecot Y, Charrier P (2021) Fracturing process of micro-concrete under uniaxial and triaxial compression: Insights from in-situ x-ray mechanical tests. Cement and Concrete Research 149:106578

    Article  Google Scholar 

  43. Stanic A, Brank B, Brancherie D (2020) Fracture of quasi-brittle solids by continuum and discrete-crack damage models and embedded discontinuity formulation. Eng Fract Mech 227:106924. https://doi.org/10.1016/j.engfracmech.2020.106924

    Article  Google Scholar 

  44. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193. https://doi.org/10.1016/S0045-7825(01)00188-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200. https://doi.org/10.1016/S0045-7825(01)00215-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun Y, Roubin E, Shao J, Colliat JB (2021) Strong discontinuity fe analysis for heterogeneous materials: The role of crack closure mechanism. Comput Struct 251:106556. https://doi.org/10.1016/j.compstruc.2021.106556

    Article  Google Scholar 

  47. Taylor RL, Govindjee S (2020) FEAP -A Finite Element Analysis Program - Version 86 Programmer Manual. Univ Calif Berk 16(20):4681–690

    Google Scholar 

  48. Unosson M, Olovsson L, Simonsson K (2006) Failure modelling in finite element analyses: Element erosion with crack-tip enhancement. Finite Elem Analy Des 42:283–297. https://doi.org/10.1016/j.finel.2005.07.001

    Article  Google Scholar 

  49. Watwood V (1970) The finite element method for prediction of crack behavior. Nuclear Eng Desi 11:323–332. https://doi.org/10.1016/0029-5493(70)90155-X

    Article  Google Scholar 

  50. Weinan E (2011) Principles of Multiscale Modeling. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  51. Wells G, Sluys L (2001) Three-dimensional embedded discontinuity model for brittle fracture. Int J Solids Struct. 38:897–913. https://doi.org/10.1016/S0020-7683(00)00029-9

    Article  MATH  Google Scholar 

  52. Zeng Q, Motamedi MH, Leong AFT, Daphalapurkar NP, Hufnagel TC, Ramesh KT (2019) Validated simulations of dynamic crack propagation in single crystals using efem and xfem. Int J Fract 215:49–65. https://doi.org/10.1007/s10704-018-0330-7

    Article  Google Scholar 

  53. Zhang Y, Lackner R, Zeiml M, Mang HA (2015) Strong discontinuity embedded approach with standard sos formulation: Element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Eng 287:335–366. https://doi.org/10.1016/j.cma.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Malecot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, A., Roubin, E., Malecot, Y. et al. A mixed-mode E-FEM approach for the study of local fracture processes in heterogeneous quasi-brittle materials. Mater Struct 55, 222 (2022). https://doi.org/10.1617/s11527-022-02055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02055-y

Keywords

Navigation