Skip to main content
Log in

Influence of pre-carbonation on hydro-mechanical properties of cement paste subjected to leaching

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Depleted oil reservoirs have been one of the most practical options for CO2 sequestration. To ensure the overall sealing performance of oilwell for CO2 injection, it is necessary to understand the long-term hydro-mechanical behaviour of cement paste used as oilwell casing. In the presence of high CO2 concentration and water, cement paste is firstly carbonated and then may be degraded by carbonic acid in CO2 storage. The present work aims to experimentally investigate the pre-carbonation effects on the leaching of oilwell cement paste, with special attention to hydro-mechanical properties. By using a series of uniaxial compression tests and triaxial compression tests with permeability measurements, permeability and mechanical properties of sound and pre-carbonated materials, before and after leaching treatment, are measured and analysed. Moreover, the time-dependent behaviour of pre-carbonated material subjected to leaching is studied via a coupled creep test. The obtained results exhibit that after leaching treatment, comparing with the initially sound samples, the pre-carbonated samples exhibit higher mechanical properties, lower permeability, and smaller creep deformation. Therefore, one can conclude that the degradation of mechanical and hydraulic properties induced by leaching is reduced by the pre-carbonation of cement paste and the carbonation has a positive effect against leaching. To verify and understand the macroscopic experimental observations, some micro-indentation tests are performed at a mesoscopic scale and a mineralogy and chemistry analysis are also conducted via SEM–EDS and Raman spectroscopy tests. Experimental investigation, micromechanical analysis and microstructure will advance the understanding of long-term durability of CO2 geological storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang T, Huang H, Hu X, Feng M, Luo Z, Guo R (2017) Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate. Chem Eng J 323:320–329

    Article  Google Scholar 

  2. Sugama T (2006) Advanced cements for geothermal wells. BNL-77901-2007-IR, Energy Sciences and Technology Department/Energy Resources Division. Brookhaven National Laboratory

  3. Bagheri M, Shariatipour SM, Ganjian E (2018) A review of oil well cement alteration in CO2-rich environments. Constr Build Mater 186:946–968

    Article  Google Scholar 

  4. Carde C, Francois R (1997) Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem Concr Res 27:539–550

    Article  Google Scholar 

  5. Kutchko BG, Strazisar BR, Dzombak DA, Lowry GV, Thaulow N (2007) Degradation of well cement by CO2 under geologic sequestration conditions. Environ Sci Technol 41:4787–4792

    Article  Google Scholar 

  6. Laudet JB, Garnier A, Neuville N, Le Guen Y, Fourmaintraux D, Rafai N, Burlion N, Shao JF (2011) The behavior of oil well cement at downhole CO2 storage conditions: static and dynamic laboratory experiments. Energy Proc 4:5251–5258

    Article  Google Scholar 

  7. Mainguy M, Tognazzi C, Torrenti JM, Adenot F (2000) Modelling of leaching in pure cement paste and mortar. Cem Concr Res 30(1):83–90

    Article  Google Scholar 

  8. Omosebi O, Maheshwari H, Ahmed R, Shah S, Osisanya S, Hassani S, Simon D (2016) Degradation of well cement in HPHT acidic environment: effects of CO2 concentration and pressure. Cem Concr Compos 74:54–70

    Article  Google Scholar 

  9. Wang D, Noguchi T, Nozaki T (2019) Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. J Clean Prod 238:117980

    Article  Google Scholar 

  10. Arandigoyen M, Bicer-Simsir B, Alvarez JI, Lange DA (2006) Variation of microstructure with carbonation in lime and blended pastes. Appl Surf Sci 252(20):7562–7571

    Article  Google Scholar 

  11. De Schutter G, Audenaert K (2004) Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration. Mater Struct 37(9):591–596

    Article  Google Scholar 

  12. Fabbri A, Corvisier J, Schubnel A, Brunet F, Goffé B, Rimmele G, Barlet-Gouédard V (2009) Effect of carbonation on the hydro-mechanical properties of Portland cements. Cem Concr Res 39(12):1156–1163

    Article  Google Scholar 

  13. Garcìa-González CA, el Grouh N, Hidalgo A, Fraile J, López-Periago AM, Andrade C, Domingo C (2008) New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. J Supercrit Fluids 43(3):500–509

    Article  Google Scholar 

  14. Lo TY, Tang WC, Nadeem A (2008) Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels. Constr Build Mater 22(8):1648–1655

    Article  Google Scholar 

  15. Xu B, Yuan B, Wang Y, Zeng S, Yang Y (2019) Nanosilica-latex reduction carbonation-induced degradation in cement of CO2 geological storage wells. J Nat Gas Sci Eng 65:237–247

    Article  Google Scholar 

  16. Yang Y, Yuan B, Wang Y, Zhang S, Zhu L (2016) Carbonation resistance cement for CO2 storage and injection wells. J Pet Sci Eng 146:883–889

    Article  Google Scholar 

  17. Takla I, Burlion N, Shao JF, Saint-Marc J, Garnier A (2011) Effects of the storage of CO2 on multiaxial mechanical and hydraulic behaviors of oil-well cement. J Mater Civ Eng 23(6):741–746

    Article  Google Scholar 

  18. Bjørge R, Gawel K, Panduro EAC, Torsæter M (2019) Carbonation of silica cement at high-temperature well conditions. Int J Greenh Gas Control 82:261–268

    Article  Google Scholar 

  19. Adenot F (1992) Durabilité du béton: Caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment. PhD thesis, University of Orléans, France

  20. Andra (Agence Nationale pour la gestion des Déchets Radioactif) (2005) Réféentiel des matériaux d’un stockage de déchets à haute activité et à vie longue. Matériaux cimentaires. Folder 2005

  21. Carde C, François R (1999) Modelling the loss of strength and porosity increase due to the leaching of cement pastes. Cem Concr Compos 21(3):181–188

    Article  Google Scholar 

  22. Chen JJ, Thomas JJ, Jennings HM (2006) Decalcification shrinkage of cement paste. Cem Concr Compos 36(5):801–809

    Article  Google Scholar 

  23. Jia Y, Bian HB, Xie S, Burlion N, Shao JF (2017) A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching. Numer Anal Methods Geomech 14(18):1848–1869

    Article  Google Scholar 

  24. Kamali S, Moranville M, Leclercq S (2008) Material and environmental parameter effects on the leaching of cement pastes: experiments and modelling. Cem Concr Res 38(4):575–585

    Article  Google Scholar 

  25. Lin W, Cheng A, Huang R, Chen C, Zhou X (2011) Effect of calcium leaching on the properties of cement-based composites. J Wuhan Univ Technol Mater Sci Ed 26(5):990–997

    Article  Google Scholar 

  26. Yurtdas I, Xie S, Secq J, Burlion N, Shao JF, Sibai M, Brossolet P, Fraboulet B (2011) Couplage comportement mécanique et perméabilité - cas d’une pâte de ciment pétrolier dégradée chimiquement à 90 °C. Revue Européenne de Génie Civil 11(6):827–837

    Google Scholar 

  27. Carde C, Escadeillas G, Francois R (1997) Use of ammonium nitrate solution to simulate and accelerate the leaching of cement paste due to deionized water. Mag Concr Res 49:295–301

    Article  Google Scholar 

  28. API Specification 10A/ISO 10426 1: 2000 American Petroleum Institute

  29. Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37(7):1047–1058

    Article  Google Scholar 

  30. Wierig HJ (1984) Longtime studies on the carbonation of concrete under normal outdoor exposure. RILEM Seminar, Institut für Baustoffkunde und Materialprüfung der Universität, Hannover, pp 239–249

  31. Roy SK, Poh KB, Northwood DO (1999) Durability of concrete accelerated carbonation and weathering studies. Build Environ 34(5):597–606

    Article  Google Scholar 

  32. Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37(12):1647–1653

    Article  Google Scholar 

  33. Yuan Y, Shen J, Ma Y, Lai S (2010) Comparison of concrete carbonation process under natural condition and high CO2 concentration environments. J Wuhan Univ Technol Mater Sci Ed 25(3):515–522

    Article  Google Scholar 

  34. Yurtdas I, Xie S, Secq J, Burlio N, Shao JF, Sibai M (2006) Etude experimentale du couplage entre le comprtement Thermo - Hydro - Mécanique et la dégradation chimique d’une pâte de ciment pétrolier, Laboratoire de Mécanique de Lille

  35. Ibrahim N (2008) Caractérisation des propriétés mécaniques des géomatériaux par technique de micro-indentation. PhD thesis, University of Lille 1, France

  36. Mason HE, Du Frane WL, Walsh SDC, Dai Z, Charnvanichborikarn S, Carroll SA (2013) Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach. Environ Sci Technol 47(3):1745–1752

    Article  Google Scholar 

  37. Pei Y, Agostini F, Skoczylas F (2017) The effects of high temperature heating on the gas permeability and porosity of a cementitious material. Cem Concr Res 95:141–151

    Article  Google Scholar 

  38. Kutchko B, Strazisar B, Huerta N, Lowry G, Dzombak D, ThaulowN, (2009) CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures. Environ Sci Technol 43(10):3947–3952

    Article  Google Scholar 

  39. Li Q, Lim YM, Flores KM, Kranjc K, Jun YS (2015) Chemical reactions of portland cement with aqueous CO2 and their impacts on cement’s mechanical properties under geologic CO2 sequestration conditions. Environ Sci Technol 49(10):6335–6343

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Total for entrusting this study to the Coupled Thermo-Hydro-Mechanical-Chemical (THMC) team of the Laboratory of Mechanics, Multi-physics, Multi-scale (LaMcube), Lille—France, and for the permission to publish these results.

Funding

This study is funded by Total.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Issam Takla or Yun Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takla, I., Jia, Y., Rougelot, T. et al. Influence of pre-carbonation on hydro-mechanical properties of cement paste subjected to leaching. Mater Struct 55, 129 (2022). https://doi.org/10.1617/s11527-022-01975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01975-z

Keywords

Navigation