Skip to main content

Fresh properties of concrete containing calcined clays: a review by RILEM TC-282 CCL

Abstract

This state of the art presents an overview on the effects of calcined clay inclusion on the fresh properties of concrete under the framework of RILEM TC-282 CCL. Progress in recent literature was reviewed to determine the effects of calcined clay, particularly metakaolin and lower grade kaolinite clays, on fresh concrete properties and how to control them using admixtures, particle packing, and mixture proportioning. A summary of recent studies on the use of superplasticizers in modified (or combined form) to improve compatibility have shown promising outcomes to control the rheological properties of calcined clay binders. Superplasticizer demand required to achieve workable concrete increases with increasing dosage of calcined clay and increases substantially for concrete produced with calcined clay at water-to-cementitious material ratios below 0.40. A comparative analysis of data from several literature shows that the addition of calcined clay could reduce setting time when used without superplasticizers. Addition of superplasticizers could help to control and increase the setting time significantly. Calcined clay can be used to make concrete with similar workability and setting times as concrete containing Portland cement through the use of polycarboxylate-based superplasticizers. However, more studies in future should focus on retention of workability by suitable methodologies for various construction activities. Care should be exercised to avoid long setting times with high dosages of superplasticizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and material

All data cited in this review paper is available in the referenced sources.

Abbreviations

PC:

Portland cement

MK:

Metakaolin

LC3 :

Cement with limestone and calcined clay

w/b:

Water-binder ratio or water-cementitious materials ratio

PCE:

Polycarboxylate ether

WRA:

Water-reducing admixtures

SNF:

Sulphonated naphthalene formaldehyde

HPC:

High performance concrete

LC2 :

Limestone and calcined clay admixture

LDH:

Layered double hydroxide

References

  1. Detwiler R, Bhatty J, Barger G, Hansen E (2001) Durability of concrete containing calcined clay. Concr Int 23:43–47

    Google Scholar 

  2. Khatib JM, Wild S (1996) Pore size distribution of metakaolin paste. Cem Concr Res 26:1545–1553. https://doi.org/10.1016/0008-8846(96)00147-0

    Article  Google Scholar 

  3. Badogiannis E, Tsivilis S (2009) Exploitation of poor greek kaolins: durability of metakaolin concrete. Cem Concr Compos 31:128–133. https://doi.org/10.1016/j.cemconcomp.2008.11.001

    Article  Google Scholar 

  4. Pera J (2001) Metakaolin and calcined clays. Cem Concr Compos 23(6):iii. https://doi.org/10.1016/S0958-9465(00)00098-6

    Article  Google Scholar 

  5. Poon CS, Lam L, Kou SC et al (2001) Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res 31:1301–1306. https://doi.org/10.1016/S0008-8846(01)00581-6

    Article  Google Scholar 

  6. Badogiannis E, Kakali G, Dimopoulou G et al (2005) Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Compos 27:197–203. https://doi.org/10.1016/j.cemconcomp.2004.02.007

    Article  Google Scholar 

  7. Santarelli L (1948) Pozzolane e cementi pozzolanici (Pozzolanas and pozzolana cements) Laboratorio chimico centrale della S.A. 'Italcementi,' ROme, pp 22

  8. de Coutinho AS (1958) Pozzolans, concrete with pozzolans and pozzolanic cements

  9. Scrivener K, Martirena F, Bishnoi S, Maity S (2018) Calcined clay limestone cements (LC3). Cem Concr Res 114:49–56. https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  10. Riding KA, Zayed A (2020) What’s old is new again: a vision and path forward for calcined clay use in the USA. In: Proceedings of the 3rd International conference on calcined clays for sustainable concrete. Bishnoi S (ed), Springer, pp 785–792

  11. Desai P, Kalathingal A (2020) Fresh and hardened properties of pastes and concretes with LC3 and its economic viability: Indian ready mix industry perspective. In: Proceedings of the 3rd international conference on calcined clays for sustainable concrete. Bishnoi S (ed), Springer, pp 821–832

  12. Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  Google Scholar 

  13. Nguyen QD, Afroz S, Castel A (2020) Influence of clay calcination method on the mechanical properties and chloride diffusion resistance of limestone calcined clay cement (LC3) concrete. J Mar Sci Eng 8:1–14. https://doi.org/10.3390/JMSE8050301

    Article  Google Scholar 

  14. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–454. https://doi.org/10.1016/S0958-9465(00)00092-5

    Article  Google Scholar 

  15. Gruber KA, Ramlochan T, Boddy A et al (2001) Increasing concrete durability with high-reactivity metakaolin. Cem Concr Compos 23:479–484. https://doi.org/10.1016/S0958-9465(00)00097-4

    Article  Google Scholar 

  16. Brooks JJ, Megat Johari MA (2001) Effect of metakaolin on creep and shrinkage of concrete. Cem Concr Compos 23:495–502. https://doi.org/10.1016/S0958-9465(00)00095-0

    Article  Google Scholar 

  17. Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43:392–400. https://doi.org/10.1016/j.clay.2008.11.007

    Article  Google Scholar 

  18. Nazário Santos F, Gomes R, de Sousa S, José Faria Bombard A et al (2017) Rheological study of cement paste with metakaolin and/or limestone filler using mixture design of experiments. Constr Build Mater 143:92–103. https://doi.org/10.1016/j.conbuildmat.2017.03.001

    Article  Google Scholar 

  19. ACI 232.1 (2012) Report on the use of raw or processed natural pozzolans in concrete. Farmington Hills, MI

    Google Scholar 

  20. Alujas A, Fernández R, Quintana R et al (2015) Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101. https://doi.org/10.1016/j.clay.2015.01.028

    Article  Google Scholar 

  21. Avet F, Snellings R, Alujas Diaz A et al (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11. https://doi.org/10.1016/j.cemconres.2016.02.015

    Article  Google Scholar 

  22. Barger GS, Hansen ER, Wood MR et al (2001) Production and use of calcined natural pozzolans in concrete. Cem Concr Aggregates 23:73–80. https://doi.org/10.1520/cca10478j

    Article  Google Scholar 

  23. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122. https://doi.org/10.1016/j.cemconres.2010.09.013

    Article  Google Scholar 

  24. Tironi A, Trezza MA, Scian AN, Irassar EF (2012) Kaolinitic calcined clays: factors affecting its performance as pozzolans. Constr Build Mater 28:276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064

    Article  Google Scholar 

  25. Kaminskas R, Kubiliute R, Prialgauskaite B (2020) Smectite clay waste as an additive for Portland cement. Cem Concr Compos 113:103710. https://doi.org/10.1016/j.cemconcomp.2020.103710

    Article  Google Scholar 

  26. Toledo Filho RD, Gonçalves JP, Americano BB, Fairbairn EMR (2007) Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem Concr Res 37:1357–1365. https://doi.org/10.1016/j.cemconres.2007.06.005

    Article  Google Scholar 

  27. Scrivener KL (2014) Options for the future of cements. Indian Concr J 88:11–21

    Google Scholar 

  28. Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42:1579–1589

    Article  Google Scholar 

  29. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem Concr Res 107:124–135

    Article  Google Scholar 

  30. Dhandapani Y, Sakthivel T, Santhanam M et al (2018) Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem Concr Res 107:136–151. https://doi.org/10.1016/j.cemconres.2018.02.005

    Article  Google Scholar 

  31. Dhandapani Y, Santhanam M, Kaladharan G, Ramanathan S (2021) Towards ternary binders involving limestone additions—A review. Cem Concr Res 143:106396. https://doi.org/10.1016/j.cemconres.2021.106396

    Article  Google Scholar 

  32. Bishnoi S, Emmanuel AC, Harshvardhan (2020) Field and laboratory experience on the efficient and durable mixture design of concretes using limestone calcined clay cement. Indian Concr J 94:46–52

    Google Scholar 

  33. Barkat A, Kenai S, Menadi B et al (2019) Effects of local metakaolin addition on rheological and mechanical performance of self-compacting limestone cement concrete. J Adhes Sci Technol 33:963–985. https://doi.org/10.1080/01694243.2019.1571737

    Article  Google Scholar 

  34. Akhlaghi O, Aytas T, Tatli B et al (2017) Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement. Cem Concr Res 101:114–122. https://doi.org/10.1016/j.cemconres.2017.08.028

    Article  Google Scholar 

  35. Sakai E, Yamada K, Ohta A (2003) Molecular structure and dispersion-adsorption mechanisms of comb-type superplasticizers used in Japan. J Adv Concr Technol 1:16–25. https://doi.org/10.3151/jact.1.16

    Article  Google Scholar 

  36. Yamada K, Ogawa S, Hanehara S (2001) Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00503-2

    Article  Google Scholar 

  37. Iruthayaraj J (2008) Poly (Ethylene Oxide) based bottle-brush polymers and their interaction with the anionic surfactant sodium dodecyl sulphate solution and interfacial properties. Royal Technical University, Stockholm

    Google Scholar 

  38. Claesson PM, Makuska R, Varga I et al (2010) Bottle-brush polymers: adsorption at surfaces and interactions with surfactants. Adv Colloid Interface Sci 155:50–57

    Article  Google Scholar 

  39. Hsu H-P, Paul W, Binder K (2011) Structure of bottle brush polymers on surfaces: weak versus strong adsorption. J Phys Chem B 115:14116–14126. https://doi.org/10.1021/jp204006z

    Article  Google Scholar 

  40. Chiang WS, Fratini E, Ridi F et al (2013) Microstructural changes of globules in calcium-silicate-hydrate gels with and without additives determined by small-angle neutron and X-ray scattering. J Colloid Interface Sci 398:67–73. https://doi.org/10.1016/j.jcis.2013.01.065

    Article  Google Scholar 

  41. Ilg M, Plank J (2019) Synthesis and properties of a polycarboxylate superplasticizer with a jellyfish-like structure comprising hyperbranched polyglycerols. Ind Eng Chem Res 58:12913–12926. https://doi.org/10.1021/acs.iecr.9b02077

    Article  Google Scholar 

  42. Ridi F, Fratini E, Luciani P et al (2012) Tricalcium silicate hydration reaction in the presence of comb-shaped superplasticizers: boundary nucleation and growth model applied to polymer-modified pastes. J Phys Chem C 116:10887–10895. https://doi.org/10.1021/jp209156n

    Article  Google Scholar 

  43. Schmid M, Plank J (2020) Dispersing performance of different kinds of polycarboxylate (PCE) superplasticizers in cement blended with a calcined clay. Constr Build Mater 258:119576. https://doi.org/10.1016/j.conbuildmat.2020.119576

    Article  Google Scholar 

  44. Nehdi ML (2014) Clay in cement-based materials: critical overview of state-of-the-art. Constr Build Mater 51:372–382. https://doi.org/10.1016/j.conbuildmat.2013.10.059

    Article  Google Scholar 

  45. Lei L, Plank J (2014) Synthesis and properties of a vinyl ether-based polycarboxylate superplasticizer for concrete possessing clay tolerance. Ind Eng Chem Res 53:1048–1055. https://doi.org/10.1021/ie4035913

    Article  Google Scholar 

  46. Ait-Akbour R, Boustingorry P, Leroux F et al (2015) Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg 2+ and Ca 2+ ) and PCP molecular structure. J Colloid Interface Sci 437:227–234. https://doi.org/10.1016/j.jcis.2014.09.027

    Article  Google Scholar 

  47. Ait-Akbour R, Taviot-Guého C, Leroux F, et al (2015) Interaction of montmorillonite with poly(ethylene glycol) and poly(methacrylic acid) polymers. Consequences on the influence of clays on superplasticizer efficiency. In: American concrete institute, ACI Special Publication

  48. Ng S (2012) Interactions of polycarboxylate based superplasticizers with montmorillonite clay in portland cement and with calcium aluminate cement. Technische Universität München

  49. Ng S, Plank J (2012) Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cem Concr Res 42:847–854. https://doi.org/10.1016/j.cemconres.2012.03.005

    Article  Google Scholar 

  50. Lei L, Plank J (2014) A study on the impact of different clay minerals on the dispersing force of conventional and modified vinyl ether based polycarboxylate superplasticizers. Cem Concr Res 60:1–10. https://doi.org/10.1016/j.cemconres.2014.02.009

    Article  Google Scholar 

  51. Ma Y, Shi C, Lei L et al (2020) Research progress on polycarboxylate based superplasticizers with tolerance to clays - a review. Constr Build Mater 255:119386. https://doi.org/10.1016/j.conbuildmat.2020.119386

    Article  Google Scholar 

  52. Lu Y, Kong ST, Deiseroth HJ, Mormann W (2008) Structural requirements for the intercalation of polyether polyols into sodium-montmorillonite: the role of oxyethylene sequences. Macromol Mater Eng 293:900–906. https://doi.org/10.1002/mame.200800155

    Article  Google Scholar 

  53. Lei L, Plank J (2012) A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cem Concr Res 42:1299–1306. https://doi.org/10.1016/j.cemconres.2012.07.001

    Article  Google Scholar 

  54. Sun C, Zhou H, Li X, et al (2015) The clay-tolerance of amide-modified polycarboxylate superplasticizer and its performance with clay-bearing aggregates. In: International conference on Materials, Environmental And Biological Engineering (MEBE 2015). pp 237–241

  55. Xu H, Sun S, Wei J et al (2015) β-Cyclodextrin as pendant groups of a polycarboxylate superplasticizer for enhancing clay tolerance. Ind Eng Chem Res 54:9081–9088. https://doi.org/10.1021/acs.iecr.5b02578

    Article  Google Scholar 

  56. Li Y, Zhang Y, Zheng J et al (2013) Dispersion and rheological properties of concentrated kaolin suspensions with polycarboxylate copolymers bearing comb-like side chains. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2013.07.009

    Article  Google Scholar 

  57. Pefferkorn E, Nabzar L, Varoqui R (1987) Polyacrylamide Na-kaolinite interactions: effect of electrolyte concentration on polymer adsorption. Colloid Polym Sci 265:889–896. https://doi.org/10.1007/BF01421817

    Article  Google Scholar 

  58. Fernandez Lopez R (2009) Calcined clayey soils as a potential replacement for cement in developing countries. 4302:Ph.D Thesis, EPFL. https://doi.org/10.5075/epfl-thesis-4302

  59. Nair N, Mohammed Haneefa K, Santhanam M, Gettu R (2020) A study on fresh properties of limestone calcined clay blended cementitious systems. Constr Build Mater 254:119326. https://doi.org/10.1016/j.conbuildmat.2020.119326

    Article  Google Scholar 

  60. Mario Collepardi (2005) Chemical admixtures today. In: Proceedings of second international symposium on concrete tecnology for sustainable development with emphasis on infrastructure. pp 527–541

  61. Perche F, Houst YF, Bowen P, Hofmann H (2003) Adsorption of lignosulfonates and polycarboxylates depletion and electroacoustic methods. 7th Int conf superplast other chem admixtures concr suppl pap pp 1–15

  62. Ran L, Lei L, Tongbo S, Plank J (2020) Approaches to achieve fluidity retention in low-carbon calcined clay blended cements. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127770

    Article  Google Scholar 

  63. Lorentz B, Zhu H, Mapa D, et al (2020) Effect of clay mineralogy, particle size, and chemical admixtures on the rheological properties of CCIL and CCI/II systems. In: Proceedings of the 3rd international conference on calcined clays for sustainable concrete. pp 211–218

  64. Hou P, Muzenda TR, Li Q et al (2021) Mechanisms dominating thixotropy in limestone calcined clay cement (LC3). Cem Concr Res 140:106316. https://doi.org/10.1016/J.CEMCONRES.2020.106316

    Article  Google Scholar 

  65. Ferron R, Gregori A, Sun Z, Shah SP (2007) Rheological method to evaluate structural buildup in self-consolidating concrete cement pastes. ACI Mater J 104:242–250

    Google Scholar 

  66. Sonebi M, Lachemi M, Hossain KMA (2013) Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture. Constr Build Mater 38:126–138. https://doi.org/10.1016/j.conbuildmat.2012.07.102

    Article  Google Scholar 

  67. Janotka I, Puertas F, Palacios M et al (2010) Metakaolin sand-blended-cement pastes: rheology, hydration process and mechanical properties. Constr Build Mater 24:791–802. https://doi.org/10.1016/j.conbuildmat.2009.10.028

    Article  Google Scholar 

  68. Vance K, Kumar A, Sant G, Neithalath N (2013) The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash. Cem Concr Res 52:196–207. https://doi.org/10.1016/j.cemconres.2013.07.007

    Article  Google Scholar 

  69. Nazário Santos F, Gomes R, de Sousa S, José Faria Bombard A, Lopes Vieira S (2017) Rheological study of cement paste with metakaolin and/or limestone filler using mixture design of experiments. Constr Build Mater 143:92–103. https://doi.org/10.1016/j.conbuildmat.2017.03.001

    Article  Google Scholar 

  70. Ferreiro S, Herfort D, Damtoft JSS (2017) Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay—limestone Portland cements. Cem Concr Res 101:1–12. https://doi.org/10.1016/j.cemconres.2017.08.003

    Article  Google Scholar 

  71. Paiva H, Velosa A, Cachim P, Ferreira VM (2012) Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cem Concr Res 42:607–612. https://doi.org/10.1016/j.cemconres.2012.01.005

    Article  Google Scholar 

  72. ASTM C494 (2015) Standard Specification for Chemical Admixtures for Concrete. ASTM Int. https://doi.org/10.1520/C0494

    Article  Google Scholar 

  73. Zaribaf BH, Kurtis KE (2018) Admixture compatibility in metakaolin–Portland-limestone cement blends. Mater Struct Constr 51:1–13. https://doi.org/10.1617/s11527-018-1154-7

    Article  Google Scholar 

  74. Sposito R, Beuntner N, Thienel K-C (2019) Rheology, setting and hydration of calcined clay blended cements in interaction with PCE. Mag Concr Res. https://doi.org/10.1680/jmacr.19.00488

    Article  Google Scholar 

  75. Muzenda TR, Hou P, Kawashima S et al (2020) The role of limestone and calcined clay on the rheological properties of LC3. Cem Concr Compos 107:103516. https://doi.org/10.1016/j.cemconcomp.2020.103516

    Article  Google Scholar 

  76. Caldarone M, Gruber KA, Burg RG (1994) High reactivity metakaolin (HRM) a new generation mineral admixture. Concr Int 16:37–40

    Google Scholar 

  77. Bai J, Wild S, Sabir BB, Kinuthia JM (1999) Workability of concrete incorporating pulverized fuel ash and metakaolin. Mag Concr Res 51:207–216

    Article  Google Scholar 

  78. Cassagnabère F, Diederich P, Mouret M et al (2013) Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state. Cem Concr Compos 37:95–107. https://doi.org/10.1016/j.cemconcomp.2012.12.001

    Article  Google Scholar 

  79. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  80. Curcio F, DeAngelis BA (1998) Dilatant behavior of superplasticized cement pastescontaining metakaolin. Cem Concr Res 28:629–634

    Article  Google Scholar 

  81. Cyr M, Legrand C, Mouret M (2000) Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives. Cem Concr Res 30:1477–1483. https://doi.org/10.1016/S0008-8846(00)00330-6

    Article  Google Scholar 

  82. Ferron RD, Shah S, Fuente E, Negro C (2013) Aggregation and breakage kinetics of fresh cement paste. Cem Concr Res 50:1–10. https://doi.org/10.1016/J.CEMCONRES.2013.03.002

    Article  Google Scholar 

  83. Beigh MAB, Nerella VN, Schröfl C, Mechtcherine V (2020) Studying the rheological behavior of limestone calcined clay cement (LC3) mixtures in the context of extrusion-based 3d-printing. In: Proceedings of the 3rd international conference on calcined clays for sustainable concrete. pp 229–236

  84. Thienel C, Beuntner N, Chucholowski C, Scherb S (2018) Performance of calcined clays in mineral construction materials. In: Ibausil-20. Internationale Baustofftagung. p 18

  85. Chen Y, Chaves Figueiredo S, Yalçinkaya Ç, et al (2019) The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based cementitious material for extrusion-based 3D concrete printing. Mater (Basel, Switzerland) 12(9):1374

  86. Chen Y, Romero Rodriguez C, Li Z et al (2020) Effect of different grade levels of calcined clays on fresh and hardened properties of ternary-blended cementitious materials for 3D printing. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103708

    Article  Google Scholar 

  87. Chen Y, Chaves Figueiredo S, Li Z et al (2020) Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cem Concr Res 132:106040. https://doi.org/10.1016/j.cemconres.2020.106040

    Article  Google Scholar 

  88. Perlot C, Rougeau P, Dehaudt S (2013) Slurry of metakaolin combined with limestone addition for self-compacted concrete. Application for precast industry. Cem Concr Compos 44:50–57. https://doi.org/10.1016/j.cemconcomp.2013.07.003

    Article  Google Scholar 

  89. Vejmelková E, Keppert M, Grzeszczyk S et al (2011) Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr Build Mater 25:1325–1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012

    Article  Google Scholar 

  90. Larsen LO, Naruts VV (2016) Self-compacting concrete with limestone powder for transport infrastructure. Mag Civ Eng 68:76–85. https://doi.org/10.5862/MCE.68.8

    Article  Google Scholar 

  91. Harshvardhan, Emmanuel AC, Bishnoi S (2020) Assessment of sorptivity and porosity characteristics of self-compacting concrete from blended cements using calcined clay and Fly Ash at various replacement levels. In: Proceedings of the 3rd international conference on calcined clays for sustainable concrete. Bishnoi S (ed), Springer, pp 691–699

  92. Branch J, Hannant DJ, Mulheron M (2002) Factors affecting the plastic shrinkage cracking of high-strength concrete. Mag Concr Res 54:347–354. https://doi.org/10.1680/macr.2002.54.5.347

    Article  Google Scholar 

  93. Cordoba GP, Zito SV, Sposito R et al (2020) Concretes with calcined clay and calcined shale: workability, mechanical, and transport properties. J Mater Civ Eng 32:1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003296

    Article  Google Scholar 

  94. Niknezhad D, Kamali-Bernard S, Garand C (2015) Influence of mineral admixtures (metakaolin, slag, fly ash) on the plastic, free, and restrained shrinkage of SCCs. Concreep 10:1157–1166

    Article  Google Scholar 

  95. Amer AA, El-Hoseny S (2017) Properties and performance of metakaolin pozzolanic cement pastes. J Therm Anal Calorim 129:33–44. https://doi.org/10.1007/s10973-017-6087-9

    Article  Google Scholar 

  96. Amin N-ul (2010) Use of clay as a pozzolona in high strength Portland cement and its thermal activation Chinese J. Geochemistry 29(143):145. https://doi.org/10.1007/s11631-010-0143-5

    Article  Google Scholar 

  97. Özcan F, Kaymak H (2018) Utilization of metakaolin and calcite: working reversely in workability aspect - as mineral admixture in self-compacting concrete. Adv Civ Eng. https://doi.org/10.1155/2018/4072838

    Article  Google Scholar 

  98. Rahhal V, Talero R (2014) Very early age detection of ettringite from pozzolan origin. Constr Build Mater 53:674–679. https://doi.org/10.1016/j.conbuildmat.2013.10.082

    Article  Google Scholar 

  99. Shah V, Parashar A, Mishra G et al (2020) Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Adv Cem Res 32:101–111. https://doi.org/10.1680/jadcr.18.00073

    Article  Google Scholar 

  100. Marchetti G, Rahhal VF, Irassar EF (2017) Influence of packing density and water film thickness on early-age properties of cement pastes with limestone filler and metakaolin. Mater Struct 50:111. https://doi.org/10.1617/s11527-016-0979-1

    Article  Google Scholar 

  101. Brooks JJ, Johari MAM, Mazloom M (2000) Cement & concrete composites effect of admixtures on the setting times of high-strength. Cem Concr Compos 22:293–301. https://doi.org/10.1016/S0958-9465(00)00025-1

    Article  Google Scholar 

  102. Elinwa AU (2006) Experimental characterization of Portland cement-calcined soldier-ant mound clay cement mortar and concrete. Constr Build Mater 20:754–760. https://doi.org/10.1016/j.conbuildmat.2005.01.053

    Article  Google Scholar 

  103. Govindarajan D, Gopalakrishnan R, Rao PS (2008) Electron paramagnetic resonance study on metakaolin-admixtured cement paste at different hydrated periods. Radiat Eff Defects Solids 163:795–804. https://doi.org/10.1080/10420150701692315

    Article  Google Scholar 

  104. Güneyisi E, Gesoğlu M, Gu E et al (2008) Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Mater Struct 41:1519–1531. https://doi.org/10.1617/s11527-007-9345-7

    Article  Google Scholar 

  105. Justice JM, Kurtis KE (2007) Influence of metakaolin surface area on properties of cement-based materials. J Mater Civ Eng 19:762–771. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(762)

    Article  Google Scholar 

  106. Khaleel OR, Abdul Razak H (2012) The effect of powder type on the setting time and self compactability of mortar. Constr Build Mater 36:20–26. https://doi.org/10.1016/j.conbuildmat.2012.04.079

    Article  Google Scholar 

  107. Mwiti MJ, Karanja TJ, Muthengia WJ (2018) Properties of activated blended cement containing high content of calcined clay. Heliyon 4:e00742. https://doi.org/10.1016/j.heliyon.2018.e00742

    Article  Google Scholar 

  108. Niknezhad D, Kamali-Bernard S, Mesbah HA (2017) Self-compacting concretes with supplementary cementitious materials: shrinkage and cracking tendency. J Mater Civ Eng 29:04017033. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001852

    Article  Google Scholar 

  109. Wang B, Ma H, Li M, Han Y (2013) Effect of metakaolin on the physical properties and setting time of high performance concrete. Key Eng Mater 539:195–199. https://doi.org/10.4028/www.scientific.net/KEM.539.195

    Article  Google Scholar 

  110. Vu DD, Stroeven P, Bui VB (2001) Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete. Cem Concr Compos 23:471–478. https://doi.org/10.1016/S0958-9465(00)00091-3

    Article  Google Scholar 

  111. EFNARC (2002) Specification and guidelines for self-compacting concrete. Rep from EFNARC 44:32

    Google Scholar 

  112. Bakera AT, Alexander MG (2019) Use of metakaolin as a supplementary cementitious material in concrete, with a focus on durability properties. RILEM Tech Lett 4:89–102

    Article  Google Scholar 

  113. Gesoǧlu M, Güneyisi E, Özturan T, Mermerdaş K (2014) Permeability properties of concretes with high reactivity metakaolin and calcined impure kaolin. Mater Struct 47:709–728

    Article  Google Scholar 

  114. Mermerdaş K, Gesoǧlu M, Güneyisi E, Özturan T (2012) Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater 37:766–774. https://doi.org/10.1016/j.conbuildmat.2012.07.077

    Article  Google Scholar 

  115. Güneyisi E, Gesoğlu M, Mermerdaş K (2010) Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments. J Mater Civ Eng 22:403–407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034

    Article  Google Scholar 

  116. de Larrard F (1999) Concrete mixture proportioning: a scientific approach (Modern Concrete Technology Series)

  117. Kumar SV, Santhanam M (2003) Particle packing theories and their application in concrete mixture proportioning: a review. Indian Concr J 77:1324–1331

    Google Scholar 

  118. Vaasudevaa B (2020) Assessment of slump retention characteristics in high performance concrete (Master Thesis, IIT Madras)

  119. Avet F, Sofia L, Scrivener K (2019) Concrete performance of limestone calcined clay cement (LC3) compared with conventional cements. Adv Civ Eng Mater 8:20190052. https://doi.org/10.1520/acem20190052

    Article  Google Scholar 

Download references

Acknowledgements

TC Membership: Chair: Fernando Martirena-Hernandez, Cuba; Deputy Chair: Manu Santhanam, India; Regular Members: Eduardo Irassar, Argentina; Arnaud Castel, David Law, Sumaiya Afroz, Taehwin Kim, Vinh Dao, Australia; Jan Elsen, Ruben Snellings, Belgium; Silvia Vieira, Brazil; Arezki Tagnit-Hamou, William Wilson, Canada; Kequan Yu, Tongbo Sui, Zengfeng Zhao, China; Oscar Oswaldo Vásquez, Colombia; Adrian Alujas, Roger Samuel Roger, Cuba; Joergen Skibsted, Mariana Canut, Sergio Ferreiro Garzón, Wolfgang Kunther, Denmark; Fabrizio Moro, François Avet, Gabriel Pham, Gilles Escadeillas, Pascal Dion, Pascal Boustingorry, Victor Poussardin, France; Alisa Machner, Elsa Qoku, Frank Dehn, Karl-Christian Theinel, Matthias Maier, Mohsen Ben Haha, Germany; Luis Velasquez, Guatemala; Anuj Parashar, Sri Kalyana Rama Jyosyula, Ravindra Gettu, Shashank Bishnoi, Talakokula Visalakshi, Tushar Bansal, Yuvaraj Dhandapani, India; Laith Al-Jaberi, Iraq; Luca Valentini, Italy; Joseph Mwiti Marangu, Kenya; Sol Moi Park, Korea; J Ivan Escalante-Garcia, Mexico; Hassan Ez-Zaki, Morroco; Roman Jaskulski, Poland; Angela Maria Nunes, Karyne Ferreira do Santos, Manuel Vieira, Portugal; Guoqing Geng, Singapore; Franco Zunino, Karen Scrivener, Switzerland; Alastair Marsh, Daniel Geddes, Hoda Beltagui, Wenzhong Zhu, Fragkoulis Kanavaris, John Provis, Shiju Joseph, Susan Bernal Lopez, Theodore Hanein, UK; Claire White, Katelyn O’Quinn, Kyle Riding, Maria C.G. Juenger, USA

Funding

No funding was provided for this work. This work was performed by a volunteer working subgroup of RILEM committee 282-CCL.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review paper conception and design. The first draft of the manuscript was written by YD, SJ, DAG, ZZ, PB, SB, MV, and KA. Riding and was edited by FM, AC, FK, and KA. Riding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kyle A. Riding.

Ethics declarations

Conflict of interest

None. This paper was prepared by a working subgroup of RILEM committee 282-CCL.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has been prepared by RILEM TC 282-CCL. The paper has been reviewed and approved by all members of the TC.

TC Membership: Chair: Fernando Martirena-Hernandez, Cuba; Deputy Chair: Manu Santhanam, India; Regular Members: Eduardo Irassar, Argentina; Arnaud Castel, David Law, Sumaiya Afroz, Taehwin Kim, Vinh Dao, Australia; Jan Elsen, Ruben Snellings, Belgium; Silvia Vieira, Brazil; Arezki Tagnit-Hamou, William Wilson, Canada; Kequan Yu, Tongbo Sui, Zengfeng Zhao, China; Oscar Oswaldo Vásquez, Colombia; Adrian Alujas, Roger Samuel Roger, Cuba; Joergen Skibsted, Mariana Canut, Sergio Ferreiro Garzón, Wolfgang Kunther, Denmark; Fabrizio Moro, François Avet, Gabriel Pham, Gilles Escadeillas, Pascal Dion, Pascal Boustingorry, Victor Poussardin, France; Alisa Machner, Elsa Qoku, Frank Dehn, Karl-Christian Theinel, Matthias Maier, Mohsen Ben Haha, Germany; Luis Velasquez, Guatemala; Anuj Parashar, Sri Kalyana Rama Jyosyula, Ravindra Gettu, Shashank Bishnoi, Talakokula Visalakshi, Tushar Bansal, Yuvaraj Dhandapani, India; Laith Al-Jaberi, Iraq; Luca Valentini, Italy; Joseph Mwiti Marangu, Kenya; Sol Moi Park, Korea; J Ivan Escalante-Garcia, Mexico; Hassan Ez-Zaki, Morroco; Roman Jaskulski, Poland; Angela Maria Nunes, Karyne Ferreira do Santos, Manuel Vieira, Portugal; Guoqing Geng, Singapore; Franco Zunino, Karen Scrivener, Switzerland; Alastair Marsh, Daniel Geddes, Hoda Beltagui, Wenzhong Zhu, Fragkoulis Kanavaris, John Provis, Shiju Joseph, Susan Bernal Lopez, Theodore Hanein, UK; Claire White, Katelyn O’Quinn, Kyle Riding, Maria C.G. Juenger, USA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhandapani, Y., Joseph, S., Geddes, D.A. et al. Fresh properties of concrete containing calcined clays: a review by RILEM TC-282 CCL. Mater Struct 55, 151 (2022). https://doi.org/10.1617/s11527-022-01971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01971-3

Keywords

  • Calcined clay
  • Fresh properties
  • Workability
  • Mixture proportioning