Skip to main content
Log in

A novel lightweight aggregate containing zeolite with potential use in gypsum composites

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present study is focused on the assessment the impact of a partial zeolitization of expanded glass aggregate on the possibility of its use in the production of lightweight plasters. Highly porous and durable zeolite aggregate were produced by relatively easy treatment of expanded glass-based low-cost material. Physical and mechanical properties (such as density, porosity, water absorption, sorptivity, thermal conductivity, compressive and flexural strength, etc.) of the hardened gypsum plasters with different light fillers have been compared. In addition to studies of the basic physical properties of the plasters, microstructural studies were carried out. It was found that the parameters of plasters with the addition of zeolite aggregate do not differ significantly from the commonly used lightweight plasters with the addition of expanded perlite, however the presence of zeolite noticeably modifies the microstructure of the plaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Triollier M, Guilhot B (1976) The hydration of calcium sulphate hemihydrate. Cem Concr Res 6:507–514. https://doi.org/10.1016/0008-8846(76)90079-X

    Article  Google Scholar 

  2. Lewry AJ, Williamson J (1994) The setting of gypsum plaster part I. The hydration of calcium sulphate hemihydrate. J Mater Sci 29:5279–5284. https://doi.org/10.1007/BF01171536

    Article  Google Scholar 

  3. Geraldo RH, Pinheiro SMM, Silva JS, Andrade HMC, Dweck J, Gonçalves JP, Camarini G (2017) Gypsum plaster waste recycling: a potential environmental and industrial solution. J Clean Prod 164:288–300. https://doi.org/10.1016/j.jclepro.2017.06.188

    Article  Google Scholar 

  4. Camarini G, dos Santos Lima Sayonara KD, Pinheiro MM (2015) Investigation on gypsum plaster waste recycling: an eco-friendly material. Green Mater 3:104–112. https://doi.org/10.1680/jgrma.15.00016

    Article  Google Scholar 

  5. Doleželová M, Krejsová J, Vimmrova A (2017) Lightweight gypsum based materials: methods of preparation and utilization. Int J Sus Dev Plann 12:326–335. https://doi.org/10.2495/SDP-V12-N2-326-335

    Article  Google Scholar 

  6. Silva LM, Ribeiro RA, Labrincha JA, Ferreira VM (2010) Role of lightweight fillers on the properties of a mixed-binder mortar. Cem Concr Compos 32:19–24. https://doi.org/10.1016/j.cemconcomp.2009.07.003

    Article  Google Scholar 

  7. Vimmrova A, Keppert M, Svoboda L, Cerny R (2011) Lightweight gypsum composites: design strategies for multi-functionality. Cem Concr Compos 33:84–89. https://doi.org/10.1016/j.cemconcomp.2010.09.011Get

    Article  Google Scholar 

  8. Singh M, Garg M (1991) Perlite-based building materials—a review of current applications. Constr Build Mater 5:75–81. https://doi.org/10.1016/0950-0618(91)90004-5

    Article  Google Scholar 

  9. Abidi S, Joliff Y, Favotto C (2016) Impact of perlite, vermiculite and cement on the young modulus of a plaster composite material: experimental analytical and numerical approaches. Compos Part B 92:28–36. https://doi.org/10.1016/j.compositesb.2016.02.034

    Article  Google Scholar 

  10. Martias A, Joliff Y, Favotto C (2014) Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Compos Part B 62:37–53. https://doi.org/10.1016/j.compositesb.2014.02.019

    Article  Google Scholar 

  11. Durgun MY (2020) Effect of wetting-drying cycles on gypsum plasters containing ground basaltic pumice and polypropylene fibers. J Build Eng 32:101801. https://doi.org/10.1016/j.jobe.2020.101801

    Article  Google Scholar 

  12. Krejsova J, Dolezelova M, Vimmrova A (2017) Behavior of gypsum based mortars with silica fume at high temperatures. Thermophys AIP Conf Proc 1866:040022-1-040022–6. https://doi.org/10.1063/1.4994502

    Article  Google Scholar 

  13. Jiang J, Lu Z, Li J, Fan Y, Niu Y (2019) Preparation and hardened properties of lightweight gypsum plaster based on pre-swelled bentonite. Constr Build Mater 215:360–370. https://doi.org/10.1016/j.conbuildmat.2019.04.181

    Article  Google Scholar 

  14. Vimmrova A, Keppert M, Michalko O, Cerny R (2014) Calcined gypsum-lime-metakaolin binders: design of optimal composition. Cem Concr Compos 52:91–96. https://doi.org/10.1016/j.cemconcomp.2014.05.011

    Article  Google Scholar 

  15. Khalil AA, Tawfik A, Hegazy AA, El-shahat MF (2014) Effect of some waste additives on the physical and mechanical properties of gypsum plaster composites. Constr Build Mater 68:580–586. https://doi.org/10.1016/j.conbuildmat.2014.06.081

    Article  Google Scholar 

  16. Gutiérrez-González S, Gadea J, Rodríguez A, Junco C, Calderón V (2012) Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr Build Mater 28:653–658. https://doi.org/10.1016/j.conbuildmat.2011.10.055

    Article  Google Scholar 

  17. Gadea J, Rodríguez A, Campos PL, Garabito J, Calderón V (2010) Lightweight mortar made with recycled polyurethane foam. Cem Concr Compos 32:672–677. https://doi.org/10.1016/j.cemconcomp.2010.07.017

    Article  Google Scholar 

  18. Bicer A, Kar F (2017) Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm Sci Eng Prog 1:59–65. https://doi.org/10.1016/j.tsep.2017.02.008

    Article  Google Scholar 

  19. Gutiérrez-González S, Gadea J, Rodríguez A, Blanco-Varela MT, Calderón V (2012) Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties. Constr Build Mater 34:179–185. https://doi.org/10.1016/j.conbuildmat.2012.02.061

    Article  Google Scholar 

  20. Król M (2020) Natural vs synthetic zeolites. Curr Comput-Aided Drug Des 10:622. https://doi.org/10.3390/cryst10070622

    Article  Google Scholar 

  21. Liguori B, Aprea P, Gennaro B, Iucolano F, Colella A, Caputo D (2019) Pozzolanic activity of zeolites: the role of Si/Al ratio. Materials 12:4231. https://doi.org/10.3390/ma12244231

    Article  Google Scholar 

  22. Caputo D, Liguori B, Colella C (2008) Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem Concr Compos 30:455–462. https://doi.org/10.1016/j.cemconcomp.2007.08.004

    Article  Google Scholar 

  23. Sophia M, Sakthieswaran N (2019) Synergistic effect of mineral admixture and bio-carbonate fillers on the physico-mechanical properties of gypsum plaster. Constr Build Mater 204:419–439. https://doi.org/10.1016/j.conbuildmat.2019.01.160

    Article  Google Scholar 

  24. Egorova AD, Filippova KE (2019) Ultra-disperse modifying zeolite-based additive for gypsum concrete, international conference on construction, architecture and technosphere safety. Mater Sci Eng 687:022030. https://doi.org/10.1088/1757-899X/687/2/022030

    Article  Google Scholar 

  25. Orlov AV, Yu QL, Rumiantsev BM, Brouwers HJH (2012) Indoor air quality improvement applying novel gypsum based materials. In: Fischer HB, Bode KA, Beutan C (eds) Proceedings of the 18th Ibausil, international conference on building materials, Bauhaus-Universität Weimar, Germany, pp 1160–1165.

  26. Fornés IV, Vaičiukynienė D, Nizevičienė D, Doroševas V, Dvořák K (2021) A method to prepare a high-strength building material from press-formed phosphogypsum purified with waste zeolite. J Build Eng 34:101919. https://doi.org/10.1016/j.jobe.2020.101919

    Article  Google Scholar 

  27. Khan MI (2002) Factors affecting the thermal properties of concrete and applicability of its prediction models. Build Environ 37:607–614. https://doi.org/10.1016/S0360-1323(01)00061-0

    Article  Google Scholar 

  28. Park SK, Kim JHJ, Namb JW, Phan HD, Kim JK (2009) Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. Cem Concr Compos 31:447–453. https://doi.org/10.1016/j.cemconcomp.2009.04.012

    Article  Google Scholar 

  29. Barnat-Hunek D, Siddique R, Klimek B, Franus M (2017) The use of zeolite, lightweight aggregate and boiler slag in restorationrenders. Constr Build Mater 142:162–174. https://doi.org/10.1016/j.conbuildmat.2017.03.079

    Article  Google Scholar 

  30. Król M, Mikuła A (2017) Synthesis of the zeolite granulate for potential sorption application. Micropor Mesopor Mater 243:201–205. https://doi.org/10.1016/j.micromeso.2017.02.028

    Article  Google Scholar 

  31. Król M (2019) Hydrothermal synthesis of zeolite aggregate with potential use as a sorbent of heavy metal cations. J Mol Struct 1183:353–359. https://doi.org/10.1016/j.molstruc.2019.02.011

    Article  Google Scholar 

  32. Colak A (2000) Density and strength characteristics of foamed gypsum. Cem Concr Compos 22:193–200. https://doi.org/10.1016/S0958-9465(00)00008-1

    Article  Google Scholar 

  33. Baspınar MS, Kahraman E (2011) Modifications in the properties of gypsum construction element via additionof expanded macroporous silica granules. Constr Build Mater 25:3327–3333. https://doi.org/10.1016/j.conbuildmat.2011.03.022

    Article  Google Scholar 

  34. Lourenço PB, Hees R, Fernandes F, Lubelli B (2014) Characterization and damage of brick masonry. In: Costa A, Guedes JM, Varum H (eds), Structural rehabilitation of old buildings. Building pathology and rehabilitation. Springer, New York, pp 109–130. https://doi.org/10.1007/978-3-642-39686-1_4

  35. Cui L, Cahyadi JH (2001) Permeability and pore structure of OPC paste. Cem Concr Res 31:277–282. https://doi.org/10.1016/S0008-8846(00)00474-9

    Article  Google Scholar 

  36. Eve S, Gominaa M, Ozouf JC, Orange G (2007) Microstructure of latex-filled plaster composites. J Eur Ceram Soc 27:1395–1398. https://doi.org/10.1016/j.jeurceramsoc.2006.04.022

    Article  Google Scholar 

  37. Panchenko AI, Kozlov N (2016) Water-resistant gypsum binder. MATEC Web Conf 86:06001. https://doi.org/10.1051/matecconf/20168606001

    Article  Google Scholar 

  38. Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of Innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839–5852. https://doi.org/10.3390/su6095839

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Science Centre Poland under Grant No. 2016/21/D/ST8/01692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Król.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Król, M. A novel lightweight aggregate containing zeolite with potential use in gypsum composites. Mater Struct 55, 89 (2022). https://doi.org/10.1617/s11527-022-01934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01934-8

Keywords

Navigation