Skip to main content
Log in

Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The rheology of fly ash-slag geopolymer binders is evaluated for different forms and dosages of dissolved silica in the alkaline activating solution. The addition of silica decreases the elastic resistance and the yield stress of the binder. The binder rheology is influenced by the polymeric form of silica in the activating solution determined by the silica modulus (MS = SiO2/Na2O molar ratio). There is a larger decrease in the elastic component and a larger increase in the viscosity at a lower MS. Silica addition at low MS transforms the yield behavior of the binder to viscous Maxwell flow response. The changes in the fresh state influenced by thixotropy and setting are related to the early kinetics and reactivity of the slag in the binder. The silica content and the MS in the activating solution influence reaction kinetics in the binder. While the addition of silica delays the hydration of slag, there is a higher level of early reactivity associated with gel formation from the dissolved silica at a lower MS. The early chemical reactivity produced by the silica in the activating solution influences the buildup of storage modulus (G/) and produces set. However, the influence of early reactivity in the systems on the measured increase in G/ and penetration resistance varies with silica content. While high early reactivity produces a faster setting, G/ does not scale with the kinetics. Higher silica content produces a more uniform distribution of reaction products, not producing a proportional increase in stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phoo-Ngernkham T, Maegawa A, Mishima N et al (2015) Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Constr Build Mater 91:1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001

    Article  Google Scholar 

  2. Rafeet A, Vinai R, Soutsos M, Sha W (2019) Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cem Concr Res 122:118–135. https://doi.org/10.1016/j.cemconres.2019.05.003

    Article  Google Scholar 

  3. Bhagath Singh GVP, Subramaniam KVL (2017) Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cem Concr Compos 81:122–132. https://doi.org/10.1016/j.cemconcomp.2017.05.001

    Article  Google Scholar 

  4. Reddy KC, Gudur C, Subramaniam KVL (2020) Study on the influences of silica and sodium in the alkali-activation of ground granulated blast furnace slag. Constr Build Mater 257:119514. https://doi.org/10.1016/j.conbuildmat.2020.119514

    Article  Google Scholar 

  5. Reddy KC, Subramaniam KVL (2021) Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends. Cem Concr Compos 123:104175. https://doi.org/10.1016/j.cemconcomp.2021.104175

    Article  Google Scholar 

  6. Davidovits J (1994) Properties of geopolymer cements. First Int Conf Alkaline Cem Concr 1:131–149

    Google Scholar 

  7. Liew YM, Heah CY, Mohd Mustafa AB, Kamarudin H (2016) Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci 83:595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002

    Article  Google Scholar 

  8. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct Constr 47:11–25. https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  9. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29:1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  10. Myers RJ, L’Hôpital E, Provis JL, Lothenbach B (2015) Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cem Concr Res 68:83–93. https://doi.org/10.1016/j.cemconres.2014.10.015

    Article  Google Scholar 

  11. Roy DM (1999) Alkali activated cements, opportunities and challenges. Cem Concr Res 29:249–254

    Article  Google Scholar 

  12. Wang SD, Pu XC, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7:93–102. https://doi.org/10.1680/adcr.1995.7.27.93

    Article  Google Scholar 

  13. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  14. Chithiraputhiran S, Neithalath N (2013) Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater 45:233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061

    Article  Google Scholar 

  15. Singh GVPB, Subramaniam KVL (2019) Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash. Cem Concr Compos 95:10–18. https://doi.org/10.1016/j.cemconcomp.2018.10.010

    Article  Google Scholar 

  16. Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031

    Article  Google Scholar 

  17. Puertas F, Martínez-Ramírez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cements. Strength behaviour and hydration products. Cem Concr Res 30:1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2

    Article  Google Scholar 

  18. Ravikumar D, Peethamparan S, Neithalath N (2010) Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cem Concr Compos 32:399–410. https://doi.org/10.1016/j.cemconcomp.2010.03.007

    Article  Google Scholar 

  19. Aydin S (2013) A ternary optimisation of mineral additives of alkali activated cement mortars. Constr Build Mater 43:131–138. https://doi.org/10.1016/j.conbuildmat.2013.02.005

    Article  Google Scholar 

  20. Duran Atiş C, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23:548–555. https://doi.org/10.1016/j.conbuildmat.2007.10.011

    Article  Google Scholar 

  21. Melo Neto AA, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38:565–574. https://doi.org/10.1016/j.cemconres.2007.11.002

    Article  Google Scholar 

  22. Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem Concr Res 30:1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6

    Article  Google Scholar 

  23. Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135. https://doi.org/10.1016/j.cemconres.2016.07.001

    Article  Google Scholar 

  24. Komljenović M, Baščarević Z, Marjanović N, Nikolić V (2013) External sulfate attack on alkali-activated slag. Constr Build Mater 49:31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

    Article  Google Scholar 

  25. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

    Article  Google Scholar 

  26. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  27. Dai X, Aydın S, Yardımcı MY et al (2020) Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cem Concr Res 138:106253. https://doi.org/10.1016/j.cemconres.2020.106253

    Article  Google Scholar 

  28. Vance K, Dakhane A, Sant G, Neithalath N (2014) Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration. Rheol Acta 53:843–855. https://doi.org/10.1007/s00397-014-0793-z

    Article  Google Scholar 

  29. Palacios M, Banfill PFG, Puertas F (2008) Rheology and setting of alkali-activated slag pastes and mortars: effect if organic admixture. ACI Mater J 105:140–148

    Google Scholar 

  30. Mehdizadeh H, Najafi Kani E, Palomo Sanchez A, Fernandez-Jimenez A (2018) Rheology of activated phosphorus slag with lime and alkaline salts. Cem Concr Res 113:121–129. https://doi.org/10.1016/j.cemconres.2018.07.010

    Article  Google Scholar 

  31. Ishwarya G, Singh B, Deshwal S, Bhattacharyya SK (2019) Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cem Concr Compos 97:226–238. https://doi.org/10.1016/j.cemconcomp.2018.12.007

    Article  Google Scholar 

  32. Ren J, Bai Y, Earle MJ, Yang C (2013) A preliminary study on the effect of separate addition of lignosulfonate superplasticiser and waterglass on the rheological behaviour of alkali-activated slags. Third International Conference on Sustainable Construction Materials & Technologies (SCMT3), Kyoto, Japan, pp. 1–11

  33. Kondepudi K, Subramaniam KVL (2021) Formulation of alkali-activated fly ash-slag binders for 3D concrete printing. Cem Concr Compos 119:103983. https://doi.org/10.1016/j.cemconcomp.2021.103983

    Article  Google Scholar 

  34. Kondepudi K, Subramaniam KVL (2021) Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders. ACI Mater J 118. https://doi.org/10.14359/51733107

  35. Gadkar A, Subramaniam KVL (2019) An evaluation of yield and Maxwell fluid behaviors of fly ash suspensions in alkali-silicate solutions. Mater Struct Constr. https://doi.org/10.1617/s11527-019-1429-7

    Article  Google Scholar 

  36. Gadkar A, Subramaniam KVL (2021) Self-leveling geopolymer concrete using alkali-activated fly ash. ACI Mater J 118:21–30

    Google Scholar 

  37. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  38. Puertas F, Varga C, Alonso MM (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem Concr Compos 53:279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

    Article  Google Scholar 

  39. Alnahhal MF, Kim T, Hajimohammadi A (2020) Evolution of flow properties, plastic viscosity, and yield stress of alkali-activated fly ash/slag pastes. RILEM Tech Lett 5:141–149

    Article  Google Scholar 

  40. Panda B, Unluer C, Tan MJ (2018) Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem Concr Compos 94:307–314. https://doi.org/10.1016/j.cemconcomp.2018.10.002

    Article  Google Scholar 

  41. Zhang Y, Zhang Y, Liu G et al (2018) Fresh properties of a novel 3D printing concrete ink. Constr Build Mater 174:263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115

    Article  Google Scholar 

  42. IS: 3812 (Part-1) (2003) Pulverized fuel ash—specification. Part 1: For use as Pozzolana in cement, cement mortar and concrete (Second Revision). Bur Indian Stand 1–14

  43. Bureau of Indian Standard (1987) IS: 12089-1987: specification for granulated slag for the manufacture of Portland slag cement. BIS, 1–14

  44. Bhagath Singh GVP, Subramaniam KVL (2018) Characterization of Indian fly ashes using different experimental techniques. Indian Concr J 92:10–23

    Google Scholar 

  45. Kondepudi K, Subramaniam KVL (2019) Rheological characterization of low-calcium fly ash suspensions in alkaline silicate colloidal solutions for geopolymer concrete production. J Clean Prod 234:690–701. https://doi.org/10.1016/j.jclepro.2019.06.124

    Article  Google Scholar 

  46. Haist M, Link J, Nicia D, Leinitz S, Baumert C, von Bronk T, Mechtcherine V (2020) Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries. Mater Struct 53(4):1–26

    Article  Google Scholar 

  47. Frigaard IA, Paso KG, de Souza Mendes PR (2017) Bingham’s model in the oil and gas industry. Rheol Acta 56:259–282. https://doi.org/10.1007/s00397-017-0999-y

    Article  Google Scholar 

  48. Gao X, Yu QL, Brouwers HJH (2015) Characterization of alkali activated slag-fly ash blends containing nano-silica. Constr Build Mater 98:397–406. https://doi.org/10.1016/j.conbuildmat.2015.08.086

    Article  Google Scholar 

  49. Li N, Shi C, Zhang Z (2019) Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos Part B Eng 171:34–45. https://doi.org/10.1016/j.compositesb.2019.04.024

    Article  Google Scholar 

  50. Gao X, Yu QL, Lazaro A, Brouwers HJH (2017) Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cem Concr Res 100:129–139. https://doi.org/10.1016/j.cemconres.2017.06.007

    Article  Google Scholar 

  51. Gao X, Yu QL, Brouwers HJH (2015) Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Constr Build Mater 80:105–115. https://doi.org/10.1016/j.conbuildmat.2015.01.065

    Article  Google Scholar 

  52. Alexander GB, Heston WM, Iler RK (1954) The solubility of amorphous silica in water. J Phys Chem 58:453–455. https://doi.org/10.1021/j150516a002

    Article  Google Scholar 

  53. Yang X, Zhu W, Yang Q (2008) The viscosity properties of sodium silicate solutions. J Solut Chem 37:73–83. https://doi.org/10.1007/s10953-007-9214-6

    Article  Google Scholar 

  54. Subramaniam KV, Wang X (2010) An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cem Concr Res 40:33–44. https://doi.org/10.1016/j.cemconres.2009.09.018

    Article  Google Scholar 

  55. Gadkar A, Subramaniam KVL (2021) Rheology control of alkali-activated fly ash with nano clay for cellular geopolymer application. Constr Build Mater 283:122687. https://doi.org/10.1016/j.conbuildmat.2021.122687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolluru V. L. Subramaniam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamakshi, T.A., Reddy, K.C. & Subramaniam, K.V.L. Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica. Mater Struct 55, 65 (2022). https://doi.org/10.1617/s11527-022-01908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01908-w

Keywords

Navigation