Skip to main content
Log in

Multiscale structural changes and drying shrinkage of Portland cement pastes: effects of a fatty-alcohol-based shrinkage reducing agent

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Investigation of the multiscale structural development of cementitious materials plays an essential role in understanding their drying behavior. Portland cement pastes with a fatty-alcohol-based shrinkage reducing agent (SRA) under practical hydration and evaporation conditions were used instead of ultimate states, which have already been reported. The results of small-angle X-ray scattering (SAXS) analysis showed that fractal disc-shaped agglomeration units of the calcium silicate hydrate (C-S-H) increased in size with the addition of the SRA. Water vapor sorption isotherms (WVSI) revealed that mesopores were formed between and/or within the agglomeration units of C-S-H, and the volume of mesopores increased with increasing SRA content. The agglomeration units containing mesopores were stable and reduced the drying shrinkage. This explanation may be extended to the macroscale structure, which predominantly contributes to drying shrinkage at very early ages. In addition, the first reported results of WVSI at extremely low relative pressures and SAXS indicated that the pore structure at the atomic level was not affected by the presence of the SRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Powers TC (1968) Mechanism of shrinkage and reversible creep of hardened cement paste. In: Proceeding of international conference the structure of concrete and its behavior under Load Cement and Concrete Association, London, UK, pp 345–364

  2. Gartner E, Maruyama I, Chen J (2017) A new model for the C-S-H phase formed during the hydration of Portland cements. Cem Concr Res 97:95–106. https://doi.org/10.1016/j.cemconres.2017.03.001

    Article  Google Scholar 

  3. Maruyama I, Sakamoto N, Matsui K, Igarashi G (2017) Microstructural changes in white Portland cement paste under the first drying process evaluated by WAXS, SAXS, and USAXS. Cem Concr Res 91:24–32. https://doi.org/10.1016/j.cemconres.2016.10.002

    Article  Google Scholar 

  4. Maruyama I, Ohkubo T, Haji T, Kurihara R (2019) Dynamic microstructural evolution of hardened cement paste during first drying monitored by 1H NMR relaxometry. Cem Concr Res 122:107–117. https://doi.org/10.1016/j.cemconres.2019.04.017

    Article  Google Scholar 

  5. McDonald PJ, Istok O, Janota M, Gajewicz-Jaromin AM, Faux DA (2020) Sorption, anomalous water transport and dynamic porosity in cement paste: a spatially localised 1H NMR relaxation study and a proposed mechanism. Cem Concr Res 133:106045. https://doi.org/10.1016/j.cemconres.2020.106045

    Article  Google Scholar 

  6. Maruyama I, Beppu K, Kurihara R, Furuta A (2016) Action mechanisms of shrinkage reducing admixture in hardened cement paste. J Adv Concr Technol 14(6):311–323. https://doi.org/10.3151/jact.14.311

    Article  Google Scholar 

  7. Maruyama I, Gartner E, Beppu K, Kurihara R (2018) Role of alcohol-ethylene oxide polymers on the reduction of shrinkage of cement paste. Cem Concr Res 111:157–168. https://doi.org/10.1016/j.cemconres.2018.05.017

    Article  Google Scholar 

  8. Weiss J, Lura P, Rajabipour F, Sant G (2008) Performance of shrinkage reducing admixtures at different humidities and at early ages. ACI Mater J 105:478–486

    Google Scholar 

  9. Saliba J, Rozière E, Grondin F, Loukili A (2011) Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem Concr Compos 33(2):209–217. https://doi.org/10.1016/j.cemconcomp.2010.10.006

    Article  Google Scholar 

  10. Lura P, Pease B, Mazzotta GB, Rajabipour F, Weiss J (2007) Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks. ACI Mater J 104-M22:187–194

    Google Scholar 

  11. Maruyama I, Igarashi G, Matsui K, Sakamoto N (2021) Hinderance of C-S-H sheet piling during first drying using a shrinkage reducing agent: a SAXS study. Cem Concr Res 144:106429. https://doi.org/10.1016/j.cemconres.2021.106429

    Article  Google Scholar 

  12. de Burgh JM, Foster SJ (2017) Influence of temperature on water vapour sorption isotherms and kinetics of hardened cement paste and concrete. Cem Concr Res 92:37–55. https://doi.org/10.1016/j.cemconres.2016.11.006

    Article  Google Scholar 

  13. Maruyama I, Nishioka Y, Igarashi G, Matsui K (2014) Microstructural and bulk property changes in hardened cement paste during the first drying process. Cem Concr Res 58:20–34. https://doi.org/10.1016/j.cemconres.2014.01.007

    Article  Google Scholar 

  14. Takahashi K, Asamoto S, Kobayashi M, Bier T (2019) Effects of fatty alcohol-based shrinkage reducing agents on early-age shrinkage under high temperature conditions. J Adv Concr Technol 17(11):648–658. https://doi.org/10.3151/jact.17.648

    Article  Google Scholar 

  15. Tim C (2014) Challenges and opportunities in tropical concreting. Procedia Eng 95:348–355. https://doi.org/10.1016/j.proeng.2014.12.193

    Article  Google Scholar 

  16. Aili A, Maruyama I (2020) Review of several experimental methods for characterization of micro- and nano-scale pores in cement-based material. Int J Concr Struct Mater 14(1):55. https://doi.org/10.1186/s40069-020-00431-y

    Article  Google Scholar 

  17. International Union of Pure and Applied Chemistry, Manual of symbols and terminology (1972) Pure Appl Chem Vol. 31:1, Coll Surf Chem 578–621, Appendix 2

  18. Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30(10):1517–1525. https://doi.org/10.1016/S0008-8846(00)00370-7

    Article  Google Scholar 

  19. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Ceram Soc 60:309–319

    Google Scholar 

  20. Odler I (2003) The BET-specific surface area of hydrated Portland cement and related materials. Cem Concr Res 33(12):2049–2056. https://doi.org/10.1016/S0008-8846(03)00225-4

    Article  Google Scholar 

  21. Dollimore D, Heal GR (1964) An improved method for the calculation of pore size distribution from adsorption data. J Appl Chem 14(3):109–114. https://doi.org/10.1002/jctb.5010140302

    Article  Google Scholar 

  22. Thommes M (2004) Physical adsorption characterization of ordered and amorphous mesoporous materials. Nanoporous materials: science and engineering, pp 317–364

  23. Naono H, Hakuman M, Tanaka T, Tamura N, Nakai K (2000) Porous texture and surface character of dehydroxylated and rehydroxylated MCM-41 mesoporous silicas–analysis of adsorption isotherms of nitrogen gas and water vapor. J Coll Interf Sci 225(2):411–420. https://doi.org/10.1006/jcis.2000.6777

    Article  Google Scholar 

  24. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [IUPAC technical report]. Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  25. Maruyama I, Rymeš J, Vandamme M, Coasne B (2018) Cavitation of water in hardened cement paste under short-term desorption measurements. Mater Struct 51(6):159. https://doi.org/10.1617/s11527-018-1285-x

    Article  Google Scholar 

  26. Naono H, Hakuman M (1993) Analysis of porous texture by means of water vapor adsorption isotherm with particular attention to lower limit of hysteresis loop. J Coll Interf Sci 158(1):19–26. https://doi.org/10.1006/jcis.1993.1223

    Article  Google Scholar 

  27. Badmann R, Stockhausen N, Setzer M (1981) The statistical thickness and the chemical potential of adsorbed water films. J Colloid Interface Sci 82(2):534–542. https://doi.org/10.1016/0021-9797(81)90395-7

    Article  Google Scholar 

  28. Thommes M, Morell J, Cychosz KA, Fröba M (2013) Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). Langmuir 29(48):14893–14902. https://doi.org/10.1021/la402832b

    Article  Google Scholar 

  29. Winslow DN, Diamond S (1974) Specific surface of hardened Portland cement paste as determined by small-angle X-ray scattering. J Am Ceram Soc 57(5):193–197. https://doi.org/10.1111/j.1151-2916.1974.tb10856.x

    Article  Google Scholar 

  30. Chiang WS, Fratini E, Ridi F, Lim SH, Yeh YQ, Baglioni P, Choi SM, Jeng US, Chen SH (2013) Microstructural changes of globules in calcium-silicate-hydrate gels with and without additives determined by small-angle neutron and X-ray scattering. J Colloid Interf Sci 398:67–73. https://doi.org/10.1016/j.jcis.2013.01.065

    Article  Google Scholar 

  31. Aligizaki KK (2006) Pore structure of cement-based materials. Taylor & Francis, New York, pp 247–285

    Google Scholar 

  32. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6(4):311–316. https://doi.org/10.1038/nmat1871

    Article  Google Scholar 

  33. Thomas JJ, Allen AJ, Jennings HM (2008) Structural changes to the calcium-silicate-hydrate gel phase of hydrated cement with age, drying, and resaturation. J Am Ceram Soc 91(10):3362–3369. https://doi.org/10.1111/j.1551-2916.2008.02636.x

    Article  Google Scholar 

  34. Nicoleau L, Gädt T, Chitu L, Maier G, Paris O (2013) Oriented aggregation of calcium silicate hydrate platelets by the use of comb-like copolymers. Soft Matter 9(19):4864–4874. https://doi.org/10.1039/c3sm00022b

    Article  Google Scholar 

  35. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    MATH  Google Scholar 

  36. Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29(8):1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4

    Article  Google Scholar 

  37. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(1):101–116. https://doi.org/10.1016/S0008-8846(99)00209-4

    Article  Google Scholar 

  38. Snoeck D, Velasco LF, Mignon A, Van Vlierberghe S, Dubruel P, Lodewyckx P, De Belie N (2014) The influence of different drying techniques on the water sorption properties of cement-based materials. Cem Concr Res 64:54–62. https://doi.org/10.1016/j.cemconres.2014.06.009

    Article  Google Scholar 

  39. Feldman RF, Sereda PJ (1964) Sorption of water on compacts of bottle-hydrated cement. I. The sorption and length-change isotherms. J Appl Chem 14(2):87–93. https://doi.org/10.1002/jctb.5010140206

    Article  Google Scholar 

  40. Hagymassy J, Odler I, Yudenfreund M, Skalny J, Brunauer S (1972) Pore structure analysis by water vapor adsorption. III. Analysis of hydrated calcium silicates and Portland cements. J Colloid Interference Sci 38(1):20–34. https://doi.org/10.1016/0021-9797(72)90215-9

    Article  Google Scholar 

  41. Odler I, Hagymassy J, Yudenfreund M, Hanna KM, Brunauer S (1972) Pore structure analysis by water vapor adsorption. IV. Analysis of hydrated Portland cement pastes of low porosity. J Colloid Interference Sci 38(1):265–276. https://doi.org/10.1016/0021-9797(72)90242-1

    Article  Google Scholar 

  42. Thommes M, Mitchell S, Perez-Ramırez J (2012) Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J Phys Chem C 116(35):18816–18823. https://doi.org/10.1021/jp3051214

    Article  Google Scholar 

  43. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38(2):137–158. https://doi.org/10.1016/j.cemconres.2007.11.005

    Article  Google Scholar 

  44. Bunkin NF, Kiseleva OA, Lobeyev AV, Movchan TG, Ninham BW, Vinogradova OI (1997) Effect of salts and dissolved gas on optical cavitation near hydrophobic and hydrophilic surfaces. Langmuir 13(11):3024–3028. https://doi.org/10.1021/la960265k

    Article  Google Scholar 

  45. Rasines G, Macías C, Haro M, Jagiello J, Ania CO (2015) Effects of CO2 activation of carbon aerogels leading to ultrahigh micro-meso porosity. Micropor Mesopor Mater 209:18–22. https://doi.org/10.1016/j.micromeso.2015.01.011

    Article  Google Scholar 

  46. Zukai A, Kubů M (2014) High-resolution adsorption analysis of pillared zeolites IPC-3PI and MCM-36. Dalton Trans 27:10558–10565. https://doi.org/10.1039/C4DT00389F

    Article  Google Scholar 

  47. Shimomura M, Yoshida M, Endo A (2017) Influence of free-space calibration using He on the measurement of adsorption isotherms. Adsorption 23(2–3):249–255. https://doi.org/10.1007/s10450-016-9845-2

    Article  Google Scholar 

  48. Horikawa T, Tan SJ, Do DD, Sotowa K, Alcántara-Avila JR, Nicholson D (2017) Temperature dependence of water adsorption on highly graphitized carbon black and highly ordered mesoporous carbon. Carbon 124:271–280. https://doi.org/10.1016/j.carbon.2017.08.067

    Article  Google Scholar 

  49. Horikawa T, Sekida T, Hayashi J, Katoh M, Do DD (2011) A new adsorption/desorption model for water adsorption in porous carbons. Carbon 49(2):416–424. https://doi.org/10.1016/j.carbon.2010.09.038

    Article  Google Scholar 

  50. Yang Q, Sun P, Fumagalli L, Stebunov Y, Haigh S, Zhou Z, Grigorieva I, Wang F, Geim A (2020) Capillary condensation under atomic-scale confinement. Nature 588:250–253. https://doi.org/10.1038/s41586-020-2978-1

    Article  Google Scholar 

  51. Horikawa T, Sakao N, Do DD (2013) Effects of temperature on water adsorption on controlled microporous and mesoporous carbonaceous solids. Carbon 56:183–192. https://doi.org/10.1016/j.carbon.2010.09.038

    Article  Google Scholar 

  52. Bentur A, Milestone NB, Mindess S, Young JF (1979) Creep and drying shrinkage of calcium silicate pastes II. Induced microstructural and chemical changes. Cem Concr Res 8:721–732. https://doi.org/10.1016/0008-8846(78)90081-9

    Article  Google Scholar 

  53. Bentur A, Berger RL, Lawrence FV, Milestone NB, Mindess S, Young JF (1979) Creep and drying shrinkage of calcium silicate pastes III. A hypothesis of irreversible strains. Cem Concr Res 9(1):83–95. https://doi.org/10.1016/0008-8846(79)90098-X

    Article  Google Scholar 

  54. Takahashi K (2015) [Doctoral Dissertation], Effects of mixing and pumping energy on technological and microstructural properties of cement-based mortars. Freiberg, Germany: Technishe Universität Bergakademie Freiberg – Freiberger Forschungshefte A 914

Download references

Acknowledgements

We sincerely thank Ms. Mari Kobayashi from Ube Industries for illustrating schematic images of the C-S-H agglomeration units in Fig. 8 and fruitful discussions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Takahashi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest directly relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Matsui, K., Asamoto, S. et al. Multiscale structural changes and drying shrinkage of Portland cement pastes: effects of a fatty-alcohol-based shrinkage reducing agent. Mater Struct 55, 44 (2022). https://doi.org/10.1617/s11527-022-01889-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01889-w

Keywords

Navigation