Skip to main content
Log in

Relationship of LDPM meso-scale parameters and aging for normal and high strength concretes

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

To assure high safety levels and functionality over the lifespan of concrete structures (50–100 years), it is important to understand the material’s behavior. As widely known, concrete changes its performance over time typically leading to enhanced material properties if deterioration mechanisms are neglected (e.g. Alkali-Silica Reaction). This contribution considers merely the former aspect of enhanced material properties. The source of the so-called concrete aging is the ongoing hydration of the cement paste, which depends on the environmental conditions and the mix design. Consequently, it is crucial to understand the evolution of concrete properties as a function of the reaction degree. In this contribution, the previous established age-dependent lattice discrete particle model developed by Wan et al. for UHPC is applied to normal and high strength concretes. This model consists of a multi-physics model solving the relevant heat and moisture transport mechanisms as well as the chemical reactions and a discrete particle model which simulates concrete at the meso-scale. These two components are coupled by a set of aging functions, mapping the reaction degree to the meso-scale parameters. The framework is applied to an extensive data-set, including test data of concretes with various compositions and ages between 1 day and 155 days. The experimental data include calorimetric and shrinkage tests, measurements of internal humidity and temperature as well as different kinds of mechanical tests. The framework captures the experimental data well with minor changes in the aging laws. Furthermore, the results indicate a strong dependence of the aging parameters on the cement type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ulm FJ, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31):4295–4311. https://doi.org/10.1016/S0020-7683(97)00317-X

    Article  MATH  Google Scholar 

  2. CEN: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, vol. BS EN 1992-1-1:2004 (2004)

  3. International Federation for Structural Concrete: \(fib\) Model Code for Concrete Structures 2010. Ernst & Sohn (2013)

  4. Cervera M, Oliver J, Prato T (1999) Thermo-chemo-mechanical model for concrete. I: Hydration and aging. J Eng Mech 125(9):1018–1027. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:9(1018)

    Article  Google Scholar 

  5. Di Luzio G, Cusatis G (2013) Solidification-micro-prestress-microplane (SMM) theory for concrete at early age: theory, validation and application. Int J Solids Struct 50(6):957–975. https://doi.org/10.1016/j.ijsolstr.2012.11.022

    Article  Google Scholar 

  6. Wan-Wendner R, Nincevic K, Boumakis I, Wan-Wendner L (2016) Age-dependent lattice discrete particle model for quasi-static simulations. Key Eng Mater 711:1090–1097. https://doi.org/10.4028/www.scientific.net/KEM.711.1090

    Article  Google Scholar 

  7. Coussy O (1995) Mechanics of porous continua. Wiley, New York

    MATH  Google Scholar 

  8. Ulm FJ, Coussy O (1995) Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech 121(7):785–794. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(785)

    Article  Google Scholar 

  9. Cervera M, Oliver J, Prato T (1999) Thermo-chemo-mechanical model for concrete. II: Damage and creep. J Eng Mech 125(9):1028. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:9(1028)

    Article  Google Scholar 

  10. Kjellsen KO, Detwiler RJ (1991) Reaction kinetics of Portland cement mortars hydrated at different temperatures. Cem Concr Res 2(1):112–120. https://doi.org/10.1016/0008-8846(92)90141-H

    Article  Google Scholar 

  11. Lackner R, Mang HA (2004) Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures. Cem Concr Compos 26(5):551–562. https://doi.org/10.1016/S0958-9465(03)00071-4

    Article  Google Scholar 

  12. Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int J Numer Methods Eng 67(3):299–311. https://doi.org/10.1002/nme.1615

    Article  MATH  Google Scholar 

  13. Bažant Z.P, Hauggaard A.B, Baweja S, Ulm F.J (1997) Microprestress-solidification theory for concrete creep. I: Aging and drying effects. J Eng Mech 123(11):1188–1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)

    Article  Google Scholar 

  14. Bažant ZP, Prasannan S (1989) Solidification theory for concrete creep. I: Formulation. J Eng Mech 115(8):1691–1703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)

    Article  Google Scholar 

  15. Gawin D, Pesavento F, Schrefler BA (2006) Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and creep of concrete. Int J Numer Methods Eng 67(3):332–363. https://doi.org/10.1002/nme.1636

    Article  MATH  Google Scholar 

  16. Gamnitzer P, Brugger A, Drexel M, Hofstetter G (2019) Modelling of coupled shrinkage and creep in multiphase formulations for hardening concrete. Materials 12(11):1745. https://doi.org/10.3390/ma12111745

    Article  Google Scholar 

  17. Gamnitzer P, Drexel M, Brugger A, Hofstetter G (2019) Calibration of a multiphase model based on a comprehensive data set for a normal strength concrete. Materials 12(5):791. https://doi.org/10.3390/ma12050791

    Article  Google Scholar 

  18. De Schutter G, Taerwe L (1996) Degree of hydration-based description of mechanical properties of early age concrete. Mater Struct 29(6):335–344. https://doi.org/10.1007/BF02486341

    Article  Google Scholar 

  19. Wan L, Wendner R, Benliang L, Cusatis G (2016) Analysis of the behavior of ultra high performance concrete at early age. Cem Concr Compos 74:120–135. https://doi.org/10.1016/j.cemconcomp.2016.08.005

    Article  Google Scholar 

  20. Di Luzio G, Cusatis G (2009) Hygro-thermo-chemical modeling of high performance concrete. I: Theory. Cem Concr Compos 31(5):301–308. https://doi.org/10.1016/j.cemconcomp.2009.02.015

    Article  Google Scholar 

  21. Di Luzio G, Cusatis G (2009) Hygro-thermo-chemical modeling of high-performance concrete. II: Numerical implementation, calibration, and validation. Cem Concr Compos 31:309–324. https://doi.org/10.1016/j.cemconcomp.2009.02.016

    Article  Google Scholar 

  22. Cusatis G, Mencarelli A, Pelessone D, Baylot J (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cem Concr Compos 33(9):891–905. https://doi.org/10.1016/j.cemconcomp.2011.02.010

    Article  Google Scholar 

  23. Cusatis G, Pelessone D, Mencarelli A (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory. Cem Concr Compos 33(9):881–890. https://doi.org/10.1016/j.cemconcomp.2011.02.011

    Article  Google Scholar 

  24. Bažant Z, Prasannan S (1989) Solidification theory for concrete creep. II: Verification and application. J Eng Mech 115:1704–1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704)

    Article  Google Scholar 

  25. De Schutter G, Taerwe L (1995) General hydration model for Portland cement and blast furnace slag cement. Cem Concr Res 25(3):593–604. https://doi.org/10.1016/0008-8846(95)00048-H

    Article  Google Scholar 

  26. Marcon M, Vorel J, Nincevic K, Wan-Wendner R (2017) Modeling adhesive anchors in a discrete element framework. Materials 10(8):10080917. https://doi.org/10.3390/ma10080917

    Article  Google Scholar 

  27. Boumakis I, Di Luzio G, Marcon M, Vorel J, Wan-Wendner R (2018) Discrete element framework for modeling tertiary creep of concrete in tension and compression. Eng Fract Mech 200:263–282. https://doi.org/10.1016/j.engfracmech.2018.07.006

    Article  Google Scholar 

  28. Boumakis I, Marcon M, Nincevic K, Czernuschka LM, Wan-Wendner R (2018) Concrete creep and shrinkage effect in adhesive anchors subjected to sustained loads. Eng Struct 175:790–805. https://doi.org/10.1016/j.engstruct.2018.07.067

    Article  Google Scholar 

  29. Alnaggar M, Pelessone D, Cusatis G (2019) Lattice discrete particle modeling of reinforced concrete flexural behavior. J Struct Eng 145:1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002230

    Article  Google Scholar 

  30. Pathirage M, Bousikhane F, D’Ambrosia M, Alnaggar M, Cusatis G (2018) Effect of alkali silica reaction on the mechanical properties of aging mortar bars: experiments and numerical modeling. Int J Damage Mech 28(2):291–322. https://doi.org/10.1177/1056789517750213

    Article  Google Scholar 

  31. Ceccato C, Salviato M, Pellegrino C, Cusatis G (2017) Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape. Int J Solids Struct 108:216–229. https://doi.org/10.1016/j.ijsolstr.2016.12.017

    Article  Google Scholar 

  32. Li W, Zhou X, Carey JW, Frash LP, Cusatis G (2018) Multiphysics lattice discrete particle modeling (M-LDPM) for the simulation of shale fracture permeability. Rock Mech Rock Eng 51(12):3963–3981. https://doi.org/10.1007/s00603-018-1625-8

    Article  Google Scholar 

  33. Del Prete C, Boumakis I, Wan-Wendner R, Vorel J, Buratti N, Mazzotti C (2021) A lattice discrete particle model to simulate the viscoelastic behaviour of macro? synthetic fibre reinforced concrete. Constr Build Mater 295:123630. https://doi.org/10.1016/j.conbuildmat.2021.123630

    Article  Google Scholar 

  34. Cusatis G, Zhou X (2014) High-order microplane theory for quasi-brittle materials with multiple characteristic lengths. J Eng Mech 140:04014046. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000747

    Article  Google Scholar 

  35. Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J Eng Mech 129(12):1439–1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)

    Article  Google Scholar 

  36. Oluokun FA, Burdette EG, Deatherage JH (1990) Early-age concrete strength prediction by maturity—another look. ACI Mater J 87(6):565–572

    Google Scholar 

  37. Plowman J (1956) Maturity and the strength of concrete. Mag Concr Res 8(22):13–22. https://doi.org/10.1680/macr.1956.8.22.13

    Article  Google Scholar 

  38. Saul AGA (1951) Principles underlying the steam curing of concrete at atmospheric pressure. Mag Concr Res 2(6):127–140. https://doi.org/10.1680/macr.1951.2.6.127

    Article  Google Scholar 

  39. Kim JK, Moon YH, Eo SH (1998) Compressive strength development of concrete with different curing time and temperature. Cem Concr Res 28(12):1761–1773. https://doi.org/10.1016/S0008-8846(98)00164-1

    Article  Google Scholar 

  40. Boumiz A, Vernet C, Cohen Tenoudjit F (1996) Mechanical properties of cement pastes and mortars at early ages—evolution with time and degree of hydration. Adv Cem Based Mater 3(3):94–106. https://doi.org/10.1016/S1065-7355(96)90042-5

    Article  Google Scholar 

  41. Dillshad KA (2011) Degree of hydration and strength development of low water-to-cement ratios in silica fume cement system. Int J Civ Environ Eng 11(5):10–15

    Google Scholar 

  42. Powers TC (1958) Structure and physical properties of hardened Portland cement paste. J Am Ceram Soc 41(1):1–6. https://doi.org/10.1111/j.1151-2916.1958.tb13494.x

    Article  Google Scholar 

  43. Wan-Wendner L, Wan-Wendner R, Cusatis G (2018) Age-dependent size effect and fracture characteristics of ultra-high performance concrete. Cem Concr Compos 85:67–82. https://doi.org/10.1016/j.cemconcomp.2017.09.010

    Article  Google Scholar 

  44. Hoover CG, Ulm FJ (2015) Experimental chemo-mechanics of early-age fracture properties of cement paste. Cem Concr Res 75:42–52. https://doi.org/10.1016/j.cemconres.2015.04.004

    Article  Google Scholar 

  45. Hillerborg A (1985) The theoretical basis of a method to determine the fracture energy \(G_F\) of concrete. Mater Struct 18:291–296. https://doi.org/10.1007/BF02472919

    Article  Google Scholar 

  46. CEN: Cement- Part 1: Composition, specifications and conformity criteria for common cements, vol. ÖNORM EN 197-1 (2018)

  47. Stefan L, Benboudjema F, Torrenti JM, Bissonnette B (2010) Prediction of elastic properties of cement pastes at early ages. Comput Mater Sci 47(3):775–784. https://doi.org/10.1016/j.commatsci.2009.11.003

    Article  Google Scholar 

  48. ASTM (2007) Practice for making and curing concrete test specimens in the laboratory, vol. ASTM C192/C192M - 07. ASTM International

  49. ASTM: Specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes, vol. ASTM C511 - 09. ASTM International (2009)

  50. ONR: ONR 23303 Prüfverfahren Beton (PVB) Nationale Anwendung der Prüfnormen für Beton und seiner Ausgangsstoffe. Austrian Standards Institute (2010)

  51. DIN: Testing hardened concrete Part 6: Tensile splitting strength of test specimens., vol. DIN EN 12390-6. Beuth Verlag (2009)

  52. Hoover CG, Bažant ZP, Vorel J, Wendner R, Hubler MH (2013) Comprehensive concrete fracture tests: description and results. Eng Fract Mech 114:92–103. https://doi.org/10.1016/j.engfracmech.2013.08.007

    Article  Google Scholar 

  53. RILEM (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater Struct 18(106):285–290. https://doi.org/10.1007/BF02472918

    Article  Google Scholar 

  54. Czernuschka LM, Wan-Wendner R, Vorel J (2018) Investigation of fracture based on sequentially linear analysis. Eng Fract Mech 202:75–86. https://doi.org/10.1016/j.engfracmech.2018.08.008

    Article  Google Scholar 

  55. Austrian Standards (2010) Prüfverfahren für Zement - Teil 8: Hydratationswärme - Lösungsverfahren, vol. Deutsche Fassung EN 196-8:2010. Beuth

  56. Abdellatef M, Boumakis I, Wan-Wendner R, Alnaggar M (2019) Lattice discrete particle modeling of concrete coupled creep and shrinkage behavior: a comprehensive calibration and validation study. Constr Build Mater 211:629–645. https://doi.org/10.1016/j.conbuildmat.2019.03.176

    Article  Google Scholar 

  57. Bažant ZP, Najjar L (1972) Nonlinear water diffusion in nonsaturated concrete. Matériaux Constr 5(1):3–20. https://doi.org/10.1007/BF02479073

    Article  Google Scholar 

  58. Habel K, Viviani M, Denarie E, Brühwiler E (2006) Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cem Concr Res 36(7):1362–1370. https://doi.org/10.1016/j.cemconres.2006.03.009

    Article  Google Scholar 

  59. Pichler B, Hellmich C (2011) Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model. Cem Concr Res 41(5):467–476. https://doi.org/10.1016/j.cemconres.2011.01.010

    Article  Google Scholar 

  60. Pichler B, Hellmich C, Eberhardsteiner J, Wasserbauer J, Termkhajornkit P, Barbarulo R, Chanvillard G (2013) Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: an engineering micromechanics approach. Cem Concr Res 45:55–68. https://doi.org/10.1016/j.cemconres.2012.10.019

    Article  Google Scholar 

  61. Mindess S, Young J.F, Lawrence F (1978) Creep and drying shrinkage of calcium silicate pastes I. Specimen preparation and mechanical properties. Cem Concr Res 8(5):591–600. https://doi.org/10.1016/0008-8846(78)90042-X

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The financial support by the Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Austrian Railway (ÖBB), and the Austrian Highway agency (ASFINAG) for the project Austrian Concrete Benchmark is gratefully acknowledged. The financial support of the Austrian Research Promotion Agency (FFG) is gratefully acknowledged. Part of the experimental results used in this contribution are provided by Smart Minerals GmbH, especially the contribution of Dipl. Ing. Dr. Martin Peyerl and Dipl. Ing. Gerald Mayer is gratefully acknowledged. Furthermore, the experimental and numerical contribution from Dr. Marco Marcon is gratefully acknowledged. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). The fourth author would also like to gratefully acknowledge the financial support provided by the GAČR Grant No. 19-15666S.

Funding

Financial support was received from the Christian Doppler Research Agency for the project LiCRofast. Further support was received from the Austrian Research Promotion Agency (FFG) for the project Austrian Concrete Benchmark (Project Number 850554). The fourth author obtained financial support by the GAČR Grant No. 19-15666S. The computational results presented have been achieved [in part] using the Vienna Scientific Cluster (VSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Wan-Wendner.

Ethics declarations

Confict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinn, LM., Boumakis, I., Ninčević, K. et al. Relationship of LDPM meso-scale parameters and aging for normal and high strength concretes. Mater Struct 55, 219 (2022). https://doi.org/10.1617/s11527-022-01888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01888-x

Keywords

Navigation