Skip to main content

Advertisement

Log in

M&S Highlight: Hillerborg (1985), The theoretical basis of a method to determine the fracture energy GF of concrete

  • COMMENTARY - 75 YEARS OF RILEM: MATERIALS & STRUCTURES
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sharpe WN (2008) Springer handbook of experimental solid mechanics. Springer, Boston, MA

  2. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  3. Hillerborg A (1985) The theoretical basis of a method to determine the fracture energy G F of concrete. Mater Struct 18(4):291–296

    Article  Google Scholar 

  4. Bazant ZP, Kazemi MT (1990) Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract 44(2):111–131

    Article  Google Scholar 

  5. Jirásek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35(31–32):4133–4145

    Article  MathSciNet  Google Scholar 

  6. Bažant ZP, Planas J (2019) Fracture and size effect in concrete and other quasibrittle materials. Routledge, London

    Book  Google Scholar 

  7. Saouma VE, Natekar D, Hansen E (2003) Cohesive stresses and size effects in elasto-plastic and quasi-brittle materials. Int J Fract 119(3):287–298

    Article  Google Scholar 

  8. Shah SP (1990) Determination of fracture parameters (K Ic s and CTODc) of plain concrete using three-point bend tests. Mater Struct 23(6):457–460

    Article  Google Scholar 

  9. Shah SP (1990) Size-effect method for determining fracture energy and process zone size of concrete. Mater Struct 23(6):461–465

    Article  Google Scholar 

  10. Mihashi H, Takahashi H, Wittmann FH (eds) (1989) Fracture toughness & fracture energy test methods for concrete and rock, CRC Press, Boca Raton, 640 pp

  11. Planas J, Guinea GV, Elices M (1999) Size effect and inverse analysis in concrete fracture. Int J Fract 95(1–4):367–378

    Article  Google Scholar 

  12. Santhikumar S, Karihaloo BL (1996) Time-dependent tension softening. Mech Cohes Friction Mater 1(3):295–304

    Article  Google Scholar 

  13. Karihaloo BL (1996) Fracture mechanics and structural concrete. Int J Fract 77(1):R19–R19

    Article  Google Scholar 

  14. van Mier JG, van Vliet MR, Wang TK (2002) Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech Mater 34(11):705–724

    Article  Google Scholar 

  15. Carpinteri A, Chiaia B, Cornetti P (2001) A scale-invariant cohesive crack model for quasi-brittle materials. Eng Fract Mech 69(2):207–217

    Article  Google Scholar 

  16. Burtscher S et al (2004) RILEM TC QFS ‘quasi-brittle fracture scaling and size effect’-final report. Mater Struct 37(8):547–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This commentary is part of our celebration of 75 years of RILEM, highlighting Materials and Structures most highly influential and cited publications.

Highlighted paper: Hillerborg, A. The theoretical basis of a method to determine the fracture energy GF of concrete. 1985 Materials and Structures. 18(4), pp. 291–296.

Affiliated paper: RILEM TC FMC-50 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. 1985 Materials and Structures. 18 (4), pp. 287–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobasher, B. M&S Highlight: Hillerborg (1985), The theoretical basis of a method to determine the fracture energy GF of concrete. Mater Struct 55, 56 (2022). https://doi.org/10.1617/s11527-021-01859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01859-8

Navigation