Skip to main content
Log in

Calibration of a concrete damage plasticity model used to simulate the material components of unreinforced masonry reinforced concrete infill frames

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper discusses the identification and characterization of material parameters of a concrete damage plasticity constitutive model that is used to describe the mechanical responses of mortar, bricks, and concrete, defined here as the three material components of an unreinforced masonry infill wall system. Each of these material components exhibits a nonlinear and inelastic response, which it is hypothesized can be fully described by the use of a single concrete damage plasticity material model. A comprehensive investigation of experimental tests on these materials found in the literature showed large variations in their stress–strain mechanical responses when subjected to uniaxial compression loading. This may be attributed to different factors, including material properties, manufacturing, and geometry of the testing specimens. This work focuses on the study of material properties of mortar, bricks, and concrete, with the objective of retrieving optimal model parameters using a quasi-brittle constitutive model. For this purpose, a set of numerical experiments are designed and implemented reproducing standard uniaxial compression tests on each material. The methodology to explore the use of the proposed constitutive model includes a parametric analysis, followed by the deterministic calibration of the model parameters based on a standard optimization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lotfi H, Shing P (1991) An appraisal of smeared crack models for masonry shear wall analysis. Comput Struct 41(3):413–425. https://doi.org/10.1016/0045-7949(91)90134-8

    Article  Google Scholar 

  2. Grassl P, Jirásek M (2006) Damage-plastic model for concrete failure. Int J Solids Struct 43(22–23):7166–7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032

    Article  MATH  Google Scholar 

  3. Lubliner J (1991) A simple model of generalized plasticity. Int J Solids Struct 28(6):769–778. https://doi.org/10.1016/0020-7683(91)90155-9

    Article  MATH  Google Scholar 

  4. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326. https://doi.org/10.1016/0020-7683(89)90050-4

    Article  Google Scholar 

  5. Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq Eng Struct Dyn 26(4):423–439

    Article  Google Scholar 

  6. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

    Article  Google Scholar 

  7. Kmiecik P, Kamiński M (2011) Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch Civil Mech Eng 11(3):623–636. https://doi.org/10.1016/S1644-9665(12)60105-8

    Article  Google Scholar 

  8. Jankowiak T, Lodygowski T (2005) Identification of parameters of concrete damage plasticity constitutive model. Found Civil Environ Eng 6(1):53–69. https://doi.org/10.1016/j.proeng.2017.02.068

    Article  Google Scholar 

  9. Morbiducci R (2003) Nonlinear parameter identification of models for masonry. Int J Solids Struct 40(15):4071–4090. https://doi.org/10.1016/S0020-7683(03)00170-7

    Article  MATH  Google Scholar 

  10. Cecchi A, Sab K (2002) A multi-parameter homogenization study for modeling elastic masonry. Eur J Mech-A/Solids 21(2):249–268. https://doi.org/10.1016/S0997-7538(01)01195-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Sarhosis V, Sheng Y (2014) Identification of material parameters for low bond strength masonry. Eng Struct 60:100–110. https://doi.org/10.1016/j.engstruct.2013.12.013

    Article  Google Scholar 

  12. Morbiducci R, Shing P (1998) Parameter identification of a nonlinear interface model for masonry mortar joints. Inverse problems in engineering mechanics. Elsevier, Amsterdam, pp 273–282. https://doi.org/10.1016/B978-008043319-6/50032-7

    Chapter  Google Scholar 

  13. Chisari C, Macorini L, Amadio C, Izzuddin BA (2018) Identification of mesoscale model parameters for brick-masonry. Int J Solids Struct 146:224–240. https://doi.org/10.1016/j.ijsolstr.2018.04.003

    Article  Google Scholar 

  14. Rechea C, Levasseur S, Finno R (2008) Inverse analysis techniques for parameter identification in simulation of excavation support systems. Comput Geotech 35(3):331–345. https://doi.org/10.1016/j.compgeo.2007.08.008

    Article  Google Scholar 

  15. Chisari C (2015) Inverse techniques for model identification of masonry structures. http://hdl.handle.net/10077/11123

  16. Chisari C, Macorini L, Amadio C, Izzuddin B (2015) An inverse analysis procedure for material parameter identification of mortar joints in unreinforced masonry. Comput Struct 155:97–105. https://doi.org/10.1016/j.compstruc.2015.02.008

    Article  Google Scholar 

  17. Chisari C (2019) Tolerance-based Pareto optimality for structural identification accounting for uncertainty. Eng Comput 35(2):381–395. https://doi.org/10.1007/s00366-018-0605-7

    Article  MathSciNet  Google Scholar 

  18. Fadale TD, Nenarokomov AV, Emery AF (1995) Uncertainties in parameter estimation: the inverse problem. Int J Heat Mass Transf 38(3):511–518. https://doi.org/10.1016/0017-9310(94)00175-U

    Article  MATH  Google Scholar 

  19. Carmeliet J (1999) Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials. Mech Cohes-Frict Mater: An Int J Exp, Model Comput Mater Struct 4(1):1–16

    Article  Google Scholar 

  20. Muñoz-Rojas P, Cardoso E, Vaz M (2010) Parameter identification of damage models using genetic algorithms. Exp Mech 50(5):627–634. https://doi.org/10.1007/s11340-009-9321-y

    Article  Google Scholar 

  21. Nazari A, Sanjayan JG (2015) Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine. Ceram Int 41(9):12164–12177. https://doi.org/10.1016/j.ceramint.2015.06.037

    Article  Google Scholar 

  22. Toropov VV, van der Giessen E (1993) Parameter identification for nonlinear constitutive models: Finite Element simulation—Optimization—Nontrivial experiments. Optimal design with advanced materials. Elsevier, Amsterdam, pp 113–130

    Google Scholar 

  23. Macorini L, Izzuddin BA (2011) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Meth Eng 85(12):1584–1608. https://doi.org/10.1002/nme.3046

    Article  MATH  Google Scholar 

  24. Petracca M, Pelà L, Rossi R, Zaghi S, Camata G, Spacone E (2017) Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Constr Build Mater 15(149):296–314. https://doi.org/10.1016/j.conbuildmat.2017.05.130

    Article  Google Scholar 

  25. Pantò B, Cannizzaro F, Caliò I, Lourenço PB (2017) Numerical and experimental validation of a 3D macro-model for the in-plane and out-of-plane behavior of unreinforced masonry walls. Int J Arch Herit 11(7):946–964. https://doi.org/10.1080/15583058.2017.1325539

    Article  Google Scholar 

  26. Casolo S, Milani G (2010) A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded. Eng Struct 32(8):2352–2366. https://doi.org/10.1016/j.engstruct.2010.04.010

    Article  Google Scholar 

  27. Di Trapani F, Shing PB, Cavaleri L (2018) Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures. J Struct Eng 144(2):04017198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001926.©

    Article  Google Scholar 

  28. Simulia D (2016) Abaqus Version 2016 Documentation USA. Dassault Systems Simulia Corp, Johnston, RI, USA

    Google Scholar 

  29. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  30. Blackard B, Kim B, Citto C, Willam K, Mettupalayam S (2007) Failure issues of brick masonry. In: Proceedings of the Sixth International Conference on Fracture Mechanics of Concrete and Concrete Structures. pp 1587–1594

  31. Mehrabi AB (1996) Behavior of masonry infilled reinforced concrete frames subjected to lateral loadings.

  32. McNary WS, Abrams DP (1985) Mechanics of masonry in compression. J Struct Eng 111(4):857–870. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(857)

    Article  Google Scholar 

  33. Illampas R, Ioannou I, Charmpis DC (2014) Adobe bricks under compression: experimental investigation and derivation of stress–strain equation. Constr Build Mater 53:83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

    Article  Google Scholar 

  34. Singh S, Munjal P (2017) Bond strength and compressive stress-strain characteristics of brick masonry. J Build Eng 9:10–16. https://doi.org/10.1016/j.jobe.2016.11.006

    Article  Google Scholar 

  35. Barbosa C, Lourenço PB, Mohamad G, Hanai J (2007) Triaxial compression tests on bedding mortar samples looking at confinement effect analysis.

  36. Kaushik HB, Rai DC, Jain SK (2007) Stress-strain characteristics of clay brick masonry under uniaxial compression. J Mater Civ Eng 19(9):728–739. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728)

    Article  Google Scholar 

  37. Venkatarama Reddy B, Gupta A (2006) Strength and elastic properties of stabilized mud block masonry using cement-soil mortars. J Mater Civ Eng 18(3):472–476. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(472)

    Article  Google Scholar 

  38. Barbosa CS, Lourenço PB, Hanai JB (2010) On the compressive strength prediction for concrete masonry prisms. Mater Struct 43(3):331–344. https://doi.org/10.1617/s11527-009-9492-0

    Article  Google Scholar 

  39. Nguyen L (2014) Confined Masonry: Theoretical fundamentals, experimental test, finite element models, and future uses. University of Colorado at Boulder, CRC Press, USA

    Google Scholar 

  40. Mohamad G, Lourenço PB, Roman HR (2006) Poisson behaviour of bedding mortar under multiaxial stress state.

  41. Ciornei L (2012) Performance of polyurea retrofitted unreinforced concrete masonry walls under blast loading. University of Ottawa (Canada), https://doi.org/10.20381/RUOR-5935

  42. Fiorato AE, Sozen MA, Gamble WL (1970) An investigation of the interaction of reinforced concrete frames with masonry filler walls. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign., http://hdl.handle.net/2142/14303

  43. Xavier B, Francisco H (2015) The role of masonry infill in progressive collapse mitigation of multi-storey buildings. https://doi.org/10.25560/43154

  44. Gonçalves J, Tavares L, Toledo Filho R, Fairbairn E, Cunha E (2007) Comparison of natural and manufactured fine aggregates in cement mortars. Cem Concr Res 37(6):924–932. https://doi.org/10.1016/j.cemconres.2007.03.009

    Article  Google Scholar 

  45. Papazafeiropoulos G, Muñiz-Calvente M, Martínez-Pañeda E (2017) Abaqus2Matlab: a suitable tool for finite element post-processing. Adv Eng Softw 105:9–16. https://doi.org/10.1016/j.advengsoft.2017.01.006

    Article  Google Scholar 

  46. Drysdale RG, Hamid AA, Baker LR (1994) Masonry structures: behavior and design.

  47. Mosalam KMA (1996) Experimental and computational strategies for the seismic behavior evaluation of frames with infill walls. Cornell University

  48. Crisafulli FJ (1997) Seismic behaviour of reinforced concrete structures with masonry infills. https://doi.org/10.26021/1979

  49. Blackard B, Willam K, Mettupalayam S (2009) Experimental observations of masonry infilled reinforced concrete frames with openings. Special Publication 265:122–199

    Google Scholar 

  50. Stavridis A (2009) Analytical and experimental study of seismic performance of reinforced concrete frames infilled with masonry walls. UC San Diego, USA

    Google Scholar 

  51. Hognestad E, Hanson NW, McHenry D (1955) Concrete stress distribution in ultimate strength design. In: Journal Proceedings. vol 12. pp 455–480. https://doi.org/10.14359/11609

  52. Desayi P, Krishnan S (1964) Equation for the stress-strain curve of concrete. In: Journal Proceedings. vol 3. pp 345–350

  53. Smith G, Young L (1956) Ultimate flexural analysis based on stress-strain curves of cylinders. In: Journal Proceedings. vol 12. pp 597–609

  54. Pramono E, Willam K (1989) Fracture energy-based plasticity formulation of plain concrete. J Eng Mech 115(6):1183–1204. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1183)

    Article  Google Scholar 

  55. Grassl P (2004) Modelling of dilation of concrete and its effect in triaxial compression. Finite Elem Anal Des 40(9–10):1021–1033. https://doi.org/10.1016/j.finel.2003.04.002

    Article  Google Scholar 

  56. Feenstra PH, De Borst R (1996) A composite plasticity model for concrete. Int J Solids Struct 33(5):707–730. https://doi.org/10.1016/0020-7683(95)00060-N

    Article  MATH  Google Scholar 

  57. Chen AC, Chen W-F (1975) Constitutive relations for concrete. Journal of Engineering Mechanics 101 (ASCE# 11529 Proceeding). http://worldcat.org/issn/07339399

  58. Grassl P, Xenos D, Nyström U, Rempling R, Gylltoft K (2013) CDPM2: A damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008

    Article  Google Scholar 

  59. Demin W, Fukang H (2017) Investigation for plastic damage constitutive models of the concrete material. Procedia Eng 210:71–78. https://doi.org/10.1016/j.proeng.2017.11.050

    Article  Google Scholar 

  60. Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Div 95(12):2543–2564

    Article  Google Scholar 

  61. Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111(10):1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)

    Article  Google Scholar 

  62. Philleo RE (1955) Comparison of results of three methods for determining young’s modulus of elasticity of concrete. In: Journal Proceedings. vol 1. pp 461–470. https://doi.org/10.14359/11690

  63. Kolluru SV, Popovics JS, Shah SP (2000) Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders. Cement, Concrete Aggr 22(2):81–89. https://doi.org/10.1520/CCA10467J

    Article  Google Scholar 

  64. Hibbitt H, Karlsson B, Sorensen P (2011) Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp: Providence, RI, USA

  65. Chen W-F, Han D-J (2007) Plasticity for structural engineers. J Ross Publ. https://doi.org/10.1007/978-1-4612-3864-5

    Article  MATH  Google Scholar 

  66. Michał S, Andrzej W (2015) Calibration of the CDP model parameters in Abaqus. In: The 2015 World Congress on Advanced in Structural Engineering and Mechanics. https://doi.org/10.14359/4154.

  67. Jirasek M, Bazant ZP (2002) Inelastic analysis of structures. John Wiley & Sons, USA

    Google Scholar 

  68. Khoo C-L (1972) A failure criterion for brickwork in axial compression. University of Edinburgh

  69. Mohamad G, Fonseca FS, Roman HR, Vermeltfoort A, Rizzatti E (2015) Behavior of mortar under multitaxial stress. In: Proceedings of 12th North American Masonry Conference

  70. Mohamad G, Fonseca FS, Vermeltfoort AT, Martens DR, Lourenço PB (2017) Strength, behavior, and failure mode of hollow concrete masonry constructed with mortars of different strengths. Constr Build Mater 134:489–496. https://doi.org/10.1016/j.conbuildmat.2016.12.112

    Article  Google Scholar 

  71. Yang K-H, Lee Y, Hwang Y-H (2019) A Stress-Strain Model for Brick Prism under Uniaxial Compression. Adv Civil Eng. https://doi.org/10.1155/2019/7682575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Medina-Cetina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 Mortar data
Table 4 Brick Data
Table 5 Concrete Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albu-Jasim, Q., Medina-Cetina, Z. & Muliana, A. Calibration of a concrete damage plasticity model used to simulate the material components of unreinforced masonry reinforced concrete infill frames. Mater Struct 55, 36 (2022). https://doi.org/10.1617/s11527-021-01845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01845-0

Keywords

Navigation