Skip to main content
Log in

Enhancing thixotropy and structural build-up of alkali-activated slag/fly ash pastes with nano clay

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates the influence of nano clay on the rheological properties of alkali-activated cement pastes having different GGBFS/FA ratios. The thixotropic index, structural build-up, dynamic yield stress and heat evolution of fresh AAC pastes with addition of nano clay are studied. Test results showed that nano clay had a strong influence on the thixotropy/structural build-up and dynamic yield stress of AAC pastes depending on the GGBFS/FA ratio of the mixture. It was found that the pastes with lower GGBFS/FA ratio exhibited higher thixotropic index, but lower dynamic yield stress in the presence of nano clay. This study reveals the importance of GGBFS/FA ratio in the presence of nano clay for obtaining AAC mixtures with low dynamic yield stress for a better flowability and high thixotropy/structural build-up for stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  2. Chi MC, Chang JJ, Huang R (2012) Strength and drying shrinkage of alkali-activated slag paste and mortar. Adv Civ Eng. https://doi.org/10.1155/2012/579732

    Article  Google Scholar 

  3. Criado M, Aperador W, Sobrados I (2016) Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials (Basel). https://doi.org/10.3390/ma9030158

    Article  Google Scholar 

  4. Fernández-Jiménez A, Palomo A, Pastor JY, Martín A (2008) New cementitious materials based on alkali-activated fly ash: performance at high temperatures. J Am Ceram Soc 91(10):3308–3314. https://doi.org/10.1111/j.1551-2916.2008.02625.x

    Article  Google Scholar 

  5. Komljenović M, Baščarević Z, Marjanović N, Nikolić V (2013) External sulfate attack on alkali-activated slag. Constr Build Mater 49:31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

    Article  Google Scholar 

  6. N. Roussel, “Understanding the Rheology of Concrete,” Woodhead Publ. Ltd., 2011.

  7. Flatt RJ (2004) Towards a prediction of superplasticized concrete rheology. Mater Struct Constr 37(269):289–300. https://doi.org/10.1617/14088

    Article  Google Scholar 

  8. Roussel N, Lemaître A, Flatt RJ, Coussot P (2010) Steady state flow of cement suspensions: a micromechanical state of the art. Cem Concr Res 40(1):77–84. https://doi.org/10.1016/j.cemconres.2009.08.026

    Article  Google Scholar 

  9. Flatt RJ (2004) Dispersion forces in cement suspensions. Cem Concr Res 34(3):399–408. https://doi.org/10.1016/j.cemconres.2003.08.019

    Article  Google Scholar 

  10. Flatt RJ, Bowen P (2003) Electrostatic repulsion between particles in cement suspensions: Domain of validity of linearized Poisson-Boltzmann equation for nonideal electrolytes. Cem Concr Res 33(6):781–791. https://doi.org/10.1016/S0008-8846(02)01059-1

    Article  Google Scholar 

  11. Roussel N, Ovarlez G, Garraul S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  12. Yuan Q, Zhou D, Khayat KH, Feys D, Shi C (2016) On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2017.05.014

    Article  Google Scholar 

  13. Reiter T, Wangler NR, Flatt RJ (2017) The role of early age structural build-up in digital fabrication with concrete. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.05.011

    Article  Google Scholar 

  14. Kawashima S, Kim JH, Corr DJ, Shah SP (2012) Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays. Constr Build Mater 36:749–757. https://doi.org/10.1016/j.conbuildmat.2012.06.057

    Article  Google Scholar 

  15. Qian Y, Kawashima S (2016) Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cem Concr Res 90:73–79. https://doi.org/10.1016/j.cemconres.2016.09.005

    Article  Google Scholar 

  16. Qian Y, Ma S, Kawashima S, De Schutter G (2019) Rheological characterization of the viscoelastic solid-like properties of fresh cement pastes with nanoclay addition. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2019.102262

    Article  Google Scholar 

  17. Tregger NA, Pakula ME, Shah SP (2010) Influence of clays on the rheology of cement pastes. Cem Concr Res 40:384–391. https://doi.org/10.1016/j.cemconres.2009.11.001

    Article  Google Scholar 

  18. Qian Y, De Schutter G (2018) Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE). Cem Concr Res 111(June):15–22. https://doi.org/10.1016/j.cemconres.2018.06.013

    Article  Google Scholar 

  19. Kawashima S, Hou P, Corr DJ, Shah SP (2013) Modification of cement-based materials with nanoparticles. Cem Concr Compos 36:8–15. https://doi.org/10.1016/j.cemconcomp.2012.06.012

    Article  Google Scholar 

  20. Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015

    Article  Google Scholar 

  21. Kim JH, Beacraft M, Shah SP (2010) Effect of mineral admixtures on formwork pressure of self-consolidating concrete. Cem Concr Compos 32(9):665–671. https://doi.org/10.1016/j.cemconcomp.2010.07.018

    Article  Google Scholar 

  22. Amin Moeini M, Hosseinpoor M, Yahia A (2020) Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119551

    Article  Google Scholar 

  23. Panda B, Unluer C, Jen M (2019) Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos Part B. https://doi.org/10.1016/j.compositesb.2019.107290

    Article  Google Scholar 

  24. Ren Q, Jiang Z, Li H, Zhu X, Chen Q (2019) Fresh and hardened properties of self-compacting concrete using silicon carbide waste as a viscosity-modifying agent. Constr Build Mater 200:324–332. https://doi.org/10.1016/j.conbuildmat.2018.12.163

    Article  Google Scholar 

  25. Panda B, Ruan S, Unluer C, Jen M (2019) Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos Part B. https://doi.org/10.1016/j.compositesb.2018.11.109

    Article  Google Scholar 

  26. Panda B, Ruan S, Unluer C, Tan MJ (2020) Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2020.107826

    Article  Google Scholar 

  27. Provis JL, Kilcullen A, Duxson P, Brice DG, Van Deventer JSJ (2012) Stabilization of low-modulus sodium silicate solutions by alkali substitution. Ind Eng Chem Res 51:2483–2486. https://doi.org/10.1021/ie202143j

    Article  Google Scholar 

  28. Mostafa AM, Yahia A (2016) New approach to assess build-up of cement-based suspensions. Cem Concr Res 85:174–182. https://doi.org/10.1016/j.cemconres.2016.03.005

    Article  Google Scholar 

  29. Schultz MA, Struble LJ (1993) Use of oscillatory shear to study flow behavior of fresh cement paste. Cem Concr Res 23(2):273–282. https://doi.org/10.1016/0008-8846(93)90092-N

    Article  Google Scholar 

  30. Yuan Q, Lu X, Khayat KH, Feys D, Shi C (2017) Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Mater Struct Constr 50(2):1–12. https://doi.org/10.1617/s11527-016-0978-2

    Article  Google Scholar 

  31. Qian Y, Kawashima S (2018) Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos 86:288–296. https://doi.org/10.1016/j.cemconcomp.2017.11.019

    Article  Google Scholar 

  32. Qian Y, Lesage K, El Cheikh K, De Schutter G (2017) Effect of polycarboxylate ether superplasticizer ( PCE ) on dynamic yield stress, thixotropy and fl occulation state of fresh cement pastes in consideration of the Critical Micelle Concentration ( CMC ). Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.02.019

    Article  Google Scholar 

  33. Rifaai Y, Yahia A, Mostafa A, Aggoun S, Kadri EH (2019) Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Constr Build Mater 223:583–594. https://doi.org/10.1016/j.conbuildmat.2019.07.028

    Article  Google Scholar 

  34. Rouyer J, Poulesquen A (2015) Evidence of a Fractal Percolating Network During Geopolymerization. Am Ceram Soc. https://doi.org/10.1111/jace.13480

    Article  Google Scholar 

  35. Dai X, Aydin S, Yücel M, Lesage K, De Schutter G (2020) Influence of water to binder ratio on the rheology and structural Build-up of Alkali-Activated Slag / Fly ash mixtures. Constr Build Mater 264:120253. https://doi.org/10.1016/j.conbuildmat.2020.120253

    Article  Google Scholar 

  36. Kashani A, Provis JL, Qiao GG, Van Deventer JSJ (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr Build Mater 65:583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127

    Article  Google Scholar 

  37. Alnahhal MF, Kim T, Hajimohammadi A (2021) Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: a comparative study with cement paste. Cem Concr. https://doi.org/10.1016/j.cemconres.2021.106441

    Article  Google Scholar 

  38. Zhang Y, Jiang Z, Zhu Y, Zhang J, Ren Q, Huang T (2020) Effects of redispersible polymer powders on the structural build-up of 3D printing cement paste with and without hydroxypropyl methylcellulose. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120551

    Article  Google Scholar 

  39. Dai X, Aydın S, Yardımcı MY, Lesage K, De Schutter G (2020) Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2020.106253

    Article  Google Scholar 

  40. Dejaeghere I, Sonebi M, De Schutter G (2019) Influence of nano-clay on rheology, fresh properties, heat of hydration and strength of cement-based mortars. Constr Build Mater 222:73–85. https://doi.org/10.1016/j.conbuildmat.2019.06.111

    Article  Google Scholar 

  41. Kawashima S, Chaouche M, Corr DJ, Shah SP (2013) Rate of thixotropic rebuilding of cement pastes modified with highly purified attapulgite clays. Cem Concr Res 53:112–118. https://doi.org/10.1016/j.cemconres.2013.05.019

    Article  Google Scholar 

  42. Chang SH, Ryan MH, Gupta RK (1993) The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheol Acta 32(3):263–269. https://doi.org/10.1007/BF00434190

    Article  Google Scholar 

  43. Neaman A, Singer A (2000) Rheological Properties of Aqueous Suspensions of Palygorskite. Soil Sci Soc Am J 64(1):427–436. https://doi.org/10.2136/sssaj2000.641427x

    Article  Google Scholar 

  44. Palacios M, Alonso MM, Varga C, Puertas F (2018) Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2018.08.010

    Article  Google Scholar 

  45. Puertas F, Varga C, Alonso MM (2014) Rheology of alkali-activated slag pastes. effect of the nature and concentration of the activating solution. Cem Concr Compos 53:279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

    Article  Google Scholar 

  46. Yang T, Zhu H, Zhang Z, Gao X, Zhang C, Wu Q (2018) Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes. Cem Concr Res 109(April):198–207. https://doi.org/10.1016/j.cemconres.2018.04.008

    Article  Google Scholar 

  47. Gao X, Yu QL, Brouwers HJH (2015) Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Constr Build Mater 80:105–115. https://doi.org/10.1016/j.conbuildmat.2015.01.065

    Article  Google Scholar 

  48. Nedeljković M, Li Z, Ye G (2018) Setting, strength, and autogenous shrinkage of alkali-activated fly ash and slag pastes: effect of slag content. Materials (Basel). https://doi.org/10.3390/ma11112121

    Article  Google Scholar 

  49. Zuhua Z, Xiao Y, Huajun Z, Yue C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43(2):218–223. https://doi.org/10.1016/j.clay.2008.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the result of research actions performed in the framework of the FWO-EOS project 30439691 ‘INTERdisciplinary multiscale Assessment of a new generation of Concrete with alkali- activated maTerials’ (INTERACT). The financial support by FWO-EOS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Xiaodi DAI: Methodology, Investigation, Writing–original draft; Qiang Ren: Investigation, Writing–review editing; Serdar AYDIN: Methodology, Conceptualization, Writing–review editing; Mert Yücel YARDIMCI: Validation, Writing–review editing; Karel LESAGE: Supervision, Writing–review editing; Geert De SCHUTTER: Funding acquisition, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Geert De Schutter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Ren, Q., Aydın, S. et al. Enhancing thixotropy and structural build-up of alkali-activated slag/fly ash pastes with nano clay. Mater Struct 54, 163 (2021). https://doi.org/10.1617/s11527-021-01760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01760-4

Keywords

Navigation