Skip to main content
Log in

Measurement and prediction of thermal properties of alkali-activated fly ash/slag binders at elevated temperatures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive experimental study of thermal properties of various alkali-activated binders at ambient and elevated temperatures. The binders were prepared using alkali-activated low calcium fly ash/ground granulated blast-furnace slag at ratios of 100/0, 90/10, 50/50 and 0/100 wt%. These binders can be considered as a composite of solid, water and air. Accordingly, a three-phase model is applied to predict thermal conductivity of the binders at ambient temperature. At elevated temperatures, the Hashin–Shtrikman model is used to estimate the bounds of thermal conductivity for alkali-activated binders containing of fly ash. To validate the above models, a transient plane source measurement technique was applied to measure the thermal conductivity and heat capacity at temperatures ranging from 23 to 600 °C. Data generated is then utilised to develop analytical expressions for estimating thermal properties as a function of temperature. The simplified relationships can be used for estimating the fire resistance of structural elements made from alkali-activated cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Article  Google Scholar 

  2. Pan Z, Feng KN, Gong K, Zou B, Korayem AH, Sanjayan J, Duan WH, Collins F (2013) Damping and microstructure of fly ash-based geopolymers. J Mater Sci 48(8):3128–3137

    Article  Google Scholar 

  3. Pan Z, Sanjayan JG (2010) Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures. Cement Concr Compos 32(9):657–664

    Article  Google Scholar 

  4. Sarker PK, Kelly S, Yao Z (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des 63:584–592

    Article  Google Scholar 

  5. Subaer, van Riessen A (2007) Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. J Mater Sci 42(9):3117–3123

    Article  Google Scholar 

  6. Duxson P, Lukey GC, van Deventer JSJ (2006) Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind Eng Chem Res 45(23):7781–7788

    Article  Google Scholar 

  7. Xu Y, Chung DDL (2000) Effect of sand addition on the specific heat and thermal conductivity of cement. Cem Concr Res 30(1):59–61

    Article  Google Scholar 

  8. Snell C, Tempest B, Gentry T (2017) Comparison of the thermal characteristics of portland cement and geopolymer cement concrete mixes. J Arch Eng 23(2):04017002

    Article  Google Scholar 

  9. van Riessen A, Jamieson E, Kealley CS, Hart RD, Williams RP (2013) Bayer-geopolymers: an exploration of synergy between the alumina and geopolymer industries. Cement Concr Compos 41:29–33

    Article  Google Scholar 

  10. Weidenfeller B, Höfer M, Schilling FR (2004) Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos A Appl Sci Manuf 35(4):423–429

    Article  Google Scholar 

  11. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  MathSciNet  Google Scholar 

  12. Pan Z, Tao Z, Cao YF, Wuhrer R, Murphy T (2018) Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cement Concr Compos 86:9–18

    Article  Google Scholar 

  13. ISO/DIS22007-2, Determination of thermal conductivity and thermal diffusivity, Part 2: Transient Plane Heat Source (Hot Disc) Method, ISO, Geneva, Switzerland, 2008

  14. Roux FJP (1974)Concrete at elevated temperature, Ph.D. Thesis, University of Cape Town, South Africa

  15. Sindhunata JL, Provis GC, Lukey H, van Xu JSJ (2008) Deventer Structural Evolution of Fly Ash Based Geopolymers in Alkaline Environments. Ind Eng Chem Res 47(9):2991–2999

    Article  Google Scholar 

  16. Diamond S (1971) A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes. Cem Concr Res 1(5):531–545

    Article  Google Scholar 

  17. Barrett EP, Joyner LG, Halenda PP (1951) The Determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Article  Google Scholar 

  18. Guerrieri M, Sanjayan J, Collins F (2010) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct 43(6):765–773

    Article  Google Scholar 

  19. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37(12):1583–1589

    Article  Google Scholar 

  20. Piasta J, Sawicz Z, Rudzinski L (1984) Changes in the structure of hardened cement paste due to high temperature. Matériaux et Construction 17(4):291–296

    Article  Google Scholar 

  21. Lo Monte F, Lombardi F, Felicetti R, Lualdi M (2017) Ground-penetrating radar monitoring of concrete at high temperature. Constr Build Mater 151:881–888

    Article  Google Scholar 

  22. Bentz DP (2007) Transient plane source measurements of the thermal properties of hydrating cement pastes. Mater Struct 40(10):1073

    Article  Google Scholar 

  23. Rezaei HR, Gupta RP, Bryant GW, Hart JT, Liu GS, Bailey CW, Wall TF, Miyamae S, Makino K, Endo Y (2000) Thermal conductivity of coal ash and slags and models used. Fuel 79(13):1697–1710

    Article  Google Scholar 

  24. Hajmohammadian Baghban M, Hovde PJ, Jacobsen S (2013) Analytical and experimental study on thermal conductivity of hardened cement pastes. Mater Struct 46(9):1537–1546

    Article  Google Scholar 

  25. Khaliq W, Kodur V (2011) Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem Concr Res 41(11):1112–1122

    Article  Google Scholar 

  26. Li Z, Pan Z, Liu Y, He L, Duan W, Collins F, Sanjayan J (2014) Effects of mineral admixtures and lime on disintegration of alkali-activated slag exposed to 50°C. Constr Build Mater 70:254–261

    Article  Google Scholar 

  27. Chuah S, Duan WH, Pan Z, Hunter E, Korayem AH, Zhao XL, Collins F, Sanjayan JG (2016) The properties of fly ash based geopolymer mortars made with dune sand. Mater Des 92:571–578

    Article  Google Scholar 

  28. Ukrainczyk N, Matusinović T (2010) Thermal properties of hydrating calcium aluminate cement pastes. Cem Concr Res 40(1):128–136

    Article  Google Scholar 

  29. Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) Low-temperature synthesized aluminosilicate glasses. J Mater Sci 31(1):71–79

    Article  Google Scholar 

  30. Kodur V, Khaliq W (2011) Effect of temperature on thermal properties of different types of high-strength concrete. J Mater Civ Eng 23(6):793–801

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Australian Research Council Linkage Grant No. LP160101484 and Western Sydney University ECA award. Authors would like to acknowledge the contributions from the laboratory staff Mr Murray Bolden and Mr Robert Marshall. The authors would also like to thank the Advanced Materials Characterisation Facility and staff at WSU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Pan or Zhong Tao.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Tao, Z., Cao, YF. et al. Measurement and prediction of thermal properties of alkali-activated fly ash/slag binders at elevated temperatures. Mater Struct 51, 108 (2018). https://doi.org/10.1617/s11527-018-1233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1233-9

Keywords

Navigation