Skip to main content
Log in

Determination of the apparent activation energy for composite binder containing blast furnace ferronickel slag

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Blast furnace ferronickel slag (BFFS) has the potential to serve as a supplementary cementitious material (SCM) in the production of cement and concrete. While the composite binder containing BFFS presents varying heat release kinetics under different curing temperatures, the effect of BFFS content on the apparent activation energy (Ea) and temperature sensitivity of the composite cementitious binder has rarely been systematically explored. In this study, the modified ASTM C1074 method with hyperbolic and exponential functions is adopted to calculate the Ea values of the composite binders incorporating different amounts of BFFS via isothermal calorimetry. The results indicate that the calculated Ea values are influenced by different kinetic functions, and increasing the BFFS content from 0 to 50% has significantly elevated the Ea value and enhanced the temperature dependence of BFFS blended cement paste. Moreover, the temperature sensitivity of the composite binder containing BFFS is compared to those containing traditional SCMs, including ground granulated blast furnace slag (GGBFS) and low-calcium fly ash (FA). The study reveals that the Ea value of 50% BFFS blended cement paste is close to that of 50% GGBFS blended cement paste, and higher than that of 50% low-calcium FA blended cement paste. The high temperature sensitivity of BFFS blended cement can be leveraged to promote the early-age strength gain under different curing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saha AK, Sarker PK. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr Build Mater. 2016;123:135–42.

    Article  CAS  Google Scholar 

  2. Xi B, Li R, Zhao X, Dang Q, Zhang D, Tan W. Constraints and opportunities for the recycling of growing ferronickel slag in China. Resour Conserv Recycl. 2018;139:15–6.

    Article  Google Scholar 

  3. Komnitsas K, Zaharaki D, Perdikatsis V. Geopolymerisation of low calcium ferronickel slags. J Mater Sci. 2007;42:3073–82.

    Article  CAS  Google Scholar 

  4. Saha AK, Sarker PK. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. J Clean Prod. 2017;162:438–48.

    Article  CAS  Google Scholar 

  5. Choi YC, Choi S. Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Constr Build Mater. 2015;99:279–87.

    Article  Google Scholar 

  6. Sakoi Y, Aba M, Tsukinaga Y, Nagataki S. Properties of concrete used in ferronickel slag aggregate. In: Proceedings of the 3rd international conference on sustainable construction materials and technologies. Tokyo: Academic; 2013, pp. 1–6.

  7. Bao J, Yu Z, Wang L, Zhang P, Wan X, Gao S, et al. Application of ferronickel slag as fine aggregate in recycled aggregate concrete and the effects on transport properties. J Clean Prod. 2021;304: 127149.

    Article  CAS  Google Scholar 

  8. Sun J, Feng J, Chen Z. Effect of ferronickel slag as fine aggregate on properties of concrete. Constr Build Mater. 2019;206:201–9.

    Article  CAS  Google Scholar 

  9. Saha AK, Sarker PK. Effect of sulphate exposure on mortar consisting of ferronickel slag aggregate and supplementary cementitious materials. J Build Eng. 2020;28: 101012.

    Article  Google Scholar 

  10. Thompson A, Saha AK, Sarker PK. Comparison of the alkali-silica reactions of ferronickel slag aggregate in fly ash geopolymer and cement mortars. Eur J Environ Civ Eng. 2022;26(3):891–904.

    Article  Google Scholar 

  11. Saha AK, Sarker PK. Potential alkali silica reaction expansion mitigation of ferronickel slag aggregate by fly ash. Struct Concr. 2018;19(5):1376–86.

    Article  Google Scholar 

  12. Nguyen QD, Castel A, Kim T, Khan MSH. Performance of fly ash concrete with ferronickel slag fine aggregate against alkali-silica reaction and chloride diffusion. Cem Concr Res. 2021;139: 106265.

    Article  CAS  Google Scholar 

  13. Tomosawa F, Nagataki S, Kajiwara T, Yokoyama M. Alkali-aggregate reactivity of ferronickel-slag aggregate concrete. Spec Publ. 1997;170:1591–602.

    Google Scholar 

  14. Cao R, Li B, You N, Zhang Y, Zhang Z. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Constr Build Mater. 2018;192:123–32.

    Article  CAS  Google Scholar 

  15. You N, Li B, Cao R, Shi J, Chen C, Zhang Y. The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr Build Mater. 2019;227: 116614.

    Article  CAS  Google Scholar 

  16. Huang Z, Wang Q, Lu J. The effects of cations and concentration on reaction mechanism of alkali-activated blast furnace ferronickel slag. Compos Part B Eng. 2022;236: 109825.

    Article  CAS  Google Scholar 

  17. Komnitsas K, Bartzas G, Karmali V, Petrakis E, Kurylak W, Pietek G, et al. Assessment of alkali activation potential of a Polish ferronickel slag. Sustainability. 2019;11(7):1863.

    Article  CAS  Google Scholar 

  18. Yang K, Yang C, Zhang J, Pan Q, Yu L, Bai Y. First structural use of site-cast, alkali-activated slag concrete in China. Proc Inst Civ Eng Build. 2018;171(10):800–9.

    Article  Google Scholar 

  19. Provis JL, Van Deventer JSJ. Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer; 2013.

    Google Scholar 

  20. Katsiotis NS, Tsakiridis PE, Velissariou D, Katsiotis MS, Alhassan SM, Beazi M. Utilization of ferronickel slag as additive in Portland cement: a hydration leaching study. Waste Biomass Valorization. 2015;6:177–89.

    Article  CAS  Google Scholar 

  21. Li B, Huo B, Cao R, Wang S, Zhang Y. Sulfate resistance of steam cured ferronickel slag blended cement mortar. Cem Concr Compos. 2019;96:204–11.

    Article  CAS  Google Scholar 

  22. Rahman MA, Sarker PK, Shaikh FUA, Saha AK. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Constr Build Mater. 2017;140:194–202.

    Article  CAS  Google Scholar 

  23. Lemonis N, Tsakiridis PE, Katsiotis NS, Antiohos S, Papageorgiou D, Katsiotis MS, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr Build Mater. 2015;81:130–9.

    Article  Google Scholar 

  24. Huang Y, Wang Q, Shi M. Characteristics and reactivity of ferronickel slag powder. Constr Build Mater. 2017;156:773–89.

    Article  CAS  Google Scholar 

  25. Yang T, Yao X, Zhang Z. Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure. Constr Build Mater. 2014;59:188–94.

    Article  Google Scholar 

  26. Wang Q, Shi MX, Zhou YQ, Yu CH. Influence of ferronickel slag powder on the sulfate attack resistance of concrete. J Tsinghua Univ (Sci Technol). 2017;57(3):306–11.

    Google Scholar 

  27. Guan Q, Xia J, Leng F, Zhou Y. Utilizing blast furnace ferronickel slag as paste replacement to reduce white Portland cement content and improve performance of mortar. Adv Bridg Eng. 2021. https://doi.org/10.1186/s43251-021-00039-6.

    Article  Google Scholar 

  28. Li Y, Fang J, Cheng L, He X, Su Y, Tan H. Mechanical performance, hydration characteristics and microstructures of high volume blast furnace ferronickel slag cement mortar by wet grinding activation. Constr Build Mater. 2022. https://doi.org/10.1016/j.conbuildmat.2021.126148.

    Article  Google Scholar 

  29. Sun J, Wang Z, Chen Z. Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. J Therm Anal Calorim. 2018;131(3):2291–301.

    Article  CAS  Google Scholar 

  30. Han F, Zhang H, Pu S, Zhang Z. Hydration heat and kinetics of composite binder containing blast furnace ferronickel slag at different temperatures. Thermochim Acta. 2021;702: 178985.

    Article  CAS  Google Scholar 

  31. Brooks AG, Schindler AK, Barnes RW. Maturity method evaluated for various cementitious materials. J Mater Civ Eng. 2007;19(12):1017–25.

    Article  CAS  Google Scholar 

  32. Poole JL, Riding KA, Juenger MCG, Folliard KJ, Schindler AK. Effect of chemical admixtures on apparent activation energy of cementitious systems. J Mater Civ Eng. 2011;23(12):1654–61.

    Article  CAS  Google Scholar 

  33. Chithiraputhiran S, Neithalath N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater. 2013;45:233–42.

    Article  Google Scholar 

  34. Xu Q, Hu J, Ruiz JM, Wang K, Ge Z. Isothermal calorimetry tests and modeling of cement hydration parameters. Thermochim Acta. 2010;499(1–2):91–9.

    Article  CAS  Google Scholar 

  35. Schindler AK. Effect of temperature on hydration of cementitious materials. Mater J. 2004;101(1):72–81.

    CAS  Google Scholar 

  36. Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. ACI Mater J. 2005;102(1):24.

    CAS  Google Scholar 

  37. Poole JL, Riding KA, Folliard KJ, Juenger MCG, Schindler AK. Methods for calculating activation energy for Portland cement. ACI Mater J. 2007;104(1):303–11.

    Google Scholar 

  38. Lee CH, Hover KC. Extracting kinetic parameters from penetration resistance measurements. Cem Concr Res. 2016;83:140–51.

    Article  CAS  Google Scholar 

  39. Bentz DP. Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cem Concr Compos. 2014;53:214–23.

    Article  CAS  Google Scholar 

  40. Siddiqui S, Riding KA. Effect of calculation methods on cement paste and mortar apparent activation energy. Adv Civ Eng Mater. 2012;1(1):1–19.

    Google Scholar 

  41. Benaicha M, Burtschell Y, Alaoui AH. Prediction of compressive strength at early age of concrete–Application of maturity. J Build Eng. 2016;6:119–25.

    Article  Google Scholar 

  42. Yikici TA, Chen H-LR. Use of maturity method to estimate compressive strength of mass concrete. Constr Build Mater. 2015;95:802–12.

    Article  Google Scholar 

  43. Tank RC, Carino NJ. Rate constant functions for strength development of concrete. Mater J. 1991;88(1):74–83.

    CAS  Google Scholar 

  44. Barnett SJ, Soutsos MN, Millard SG, Bungey JH. Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies. Cem Concr Res. 2006;36(3):434–40.

    Article  CAS  Google Scholar 

  45. Liao Y, Gui Y, Wang K, Al Qunaynah S, Bawa SM, Tang S. Activation energy of calcium sulfoaluminate cement-based materials. Mater Struct. 2021;54(4):1–17.

    Article  Google Scholar 

  46. Day RL, Gamble BR. The effect of changes in structure on the activation energy for the creep of concrete. Cem Concr Res. 1983;13(4):529–40.

    Article  Google Scholar 

  47. Hauggaard AB, Damkilde L, Hansen PF. Transitional thermal creep of early age concrete. J Eng Mech. 1999;125(4):458–65.

    Article  Google Scholar 

  48. Atkins P, De Paula J. Elements of physical chemistry. Oxford University Press; 2013.

    Google Scholar 

  49. Kamkar S, Eren Ö. Evaluation of maturity method for steel fiber reinforced concrete. KSCE J Civ Eng. 2018;22(1):213–21.

    Article  Google Scholar 

  50. Jayapalan AR, Jue ML, Kurtis KE. Nanoparticles and apparent activation energy of Portland cement. J Am Ceram Soc. 2014;97(5):1534–42.

    Article  CAS  Google Scholar 

  51. Sun Y, Wang ZH, Park DJ, Kim WS, Kim HS, Yan SR, et al. Analysis of isothermal hydration heat of cement paste containing mechanically activated fly ash. Thermochim Acta. 2022. https://doi.org/10.1016/j.tca.2022.179273.

    Article  Google Scholar 

  52. Bharadwaj K, Isgor OB, Weiss WJ. A Simplified approach to determine pozzolanic reactivity of commercial supplementary cementitious materials. Towar Dev Performance-Based Concr Mix Made with Mod Cem Mater Using Thermodyn Model. 2022;20.

Download references

Acknowledgements

This work is supported by CSC Chinese Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S.R., Sun, Y., Kuang, W.Y. et al. Determination of the apparent activation energy for composite binder containing blast furnace ferronickel slag. J Therm Anal Calorim 148, 7597–7610 (2023). https://doi.org/10.1007/s10973-023-12255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12255-5

Keywords

Navigation