Skip to main content
Log in

Imaging of two-dimensional unsaturated moisture flows in uncracked and cracked cement-based materials using electrical capacitance tomography

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The development of visualizing tools to monitor unsaturated moisture flow in cement-based materials is of great importance, as most degradation processes in cement-based materials are connected to and take place in the presence moisture. This paper investigates the ability of electrical capacitance tomography (ECT) to image two-dimensional (2D) unsaturated moisture flow in cement-based materials. In ECT, the electrical permittivity distribution within an object is reconstructed based on measured capacitances between electrodes attached on the object’s surface. In a series of experiments, mortar specimens with and without discrete cracks were imaged with ECT during a 2D moisture ingress. The results show that ECT is able to monitor the evolution of the moisture flow, and to approximate the shape and position of the moisture front. These findings indicate that ECT is a viable method for monitoring and visualizing 2D unsaturated moisture flow in cement-based materials in the presence and absence of discrete cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghasemzadeh F, Pour-Ghaz M (2014) Effect of damage on moisture transport in concrete. J Mater Civ Eng 27(9):04014,242

    Article  Google Scholar 

  2. Castro J, Bentz D, Weiss J (2011) Effect of sample conditioning on the water absorption of concrete. Cement Concr Compos 33(8):805–813

    Article  Google Scholar 

  3. Akhavan A, Rajabipour F et al (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42(2):313–320

    Article  Google Scholar 

  4. Hall C, Hoff W (2011) Water Transport in Brick, Stone and Concrete, 2nd edn. Taylor & Francis, park

    Book  Google Scholar 

  5. Monteiro PJM, Mehta PK (2006) Concrete microstructure, properties and materials, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  6. Neville A (1996) Properties of concrete, 4th edn. Wiley, Hoboken

    Google Scholar 

  7. McCarter WJ, Emerson M, Ezirim H (1995) Properties of concrete in the cover zone: developments in monitoring techniques. Mag Concr Res 47(172):243–251

    Article  Google Scholar 

  8. McCarter WJ (1996) Monitoring the influence of water and ionic ingress on cover-zone concrete subjected to repeated absorption. Cem Concr Aggreg 18(1):55–63

    Article  Google Scholar 

  9. McCarter WJ, Ezirim H, Emerson M (1996) Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress. Mag Concr Res 48(176):149–156

    Article  Google Scholar 

  10. McCarter WJ, Watson D (1997) Wetting and drying of cover-zone concrete. Proc ICE Struct Build 122(2):227–236

    Article  Google Scholar 

  11. McCarter WJ, Chrisp TM, Starrs G, Adamson A, Owens E, Basheer PAM, Nanukuttan SV, Srinivasan S, Holmes N (2011) Developments in performance monitoring of concrete exposed to extreme environments. J Infrastruct Syst 18(3):167–175

    Article  Google Scholar 

  12. McCarter WJ, Chrisp M (2000) Monitoring water and ionic penetration into cover-zone concrete. ACI Mater J 97(6):668–674

    Google Scholar 

  13. Rajabipour F, Weiss J, Shane JD, Mason TO, Shah SP (2005) Procedure to interpret electrical conductivity measurements in cover concrete during rewetting. J Mater Civ Eng 17(5):586–594

    Article  Google Scholar 

  14. Buettner M, Ramirez A, Daily W (1996a) Electrical resistance tomography for imaging the spatial distribution of moisture in pavement sections. In: Structural materials technology an NDT Conference, San Diego, California

  15. Buettner M, Ramirez A, Daily W (1996b) Electrical resistance tomography for imaging concrete structures. In: Structural materials technology an NDT Conference, San Diego, California

  16. Hallaji M, Seppänen A, Pour-Ghaz M (2015) Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials. Cem Concr Res 69:10–18

    Article  Google Scholar 

  17. du Plooy R, Villain G, Palma Lopes S, Ihamouten A, Drobert X, Thauvin B (2013) Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study. Mater Struct 48(1–2):369–386

    Google Scholar 

  18. Smyl D, Hallaji M, Seppänen A, Pour-Ghaz M (2016a) Quantitative electrical imaging of three-dimensional moisture flow in cement-based materials. Int J Heat Mass Transf 103:1348–1358

    Article  Google Scholar 

  19. Smyl D, Hallaji M, Seppänen A, Pour-Ghaz M (2016b) Three-dimensional electrical impedance tomography to monitor unsaturated moisture ingress in cement-based materials. Transp Porous Med 115(1):101–124

    Article  Google Scholar 

  20. Smyl D, Rashetnia R, Seppänen A, Pour-Ghaz M (2017) Can electrical resistance tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cem Concr Res 91:61–72

    Article  Google Scholar 

  21. Karhunen K, Seppänen A, Lehikoinen A, Blunt J, Kaipio JP, Monteiro PJ (2010a) Electrical resistance tomography for assessment of cracks in concrete. ACI Mater J 107(5):523–531

    Google Scholar 

  22. Karhunen K, Seppänen A, Lehikoinen A, Monteiro PJ, Kaipio JP (2010b) Electrical resistance tomography imaging of concrete. Cem Concr Res 40(1):137–145

    Article  Google Scholar 

  23. Dérobert X, Iaquinta J, Klysz G, Balayssac JP (2008) Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete. NDT E Int 41(1):44–52

    Article  Google Scholar 

  24. Yin X, Hutchins DA, Diamond GG, Purnell P (2010) Non-destructive evaluation of concrete using a capacitive imaging technique: preliminary modelling and experiments. Cem Concr Res 40(12):1734–1743

    Article  Google Scholar 

  25. Voss A, Pour-Ghaz M, Vauhkonen M, Seppänen A (2016) Electrical capacitance tomography to monitor unsaturated moisture ingress in cement-based materials. Cem Concr Res 89:158–167

    Article  Google Scholar 

  26. Karim NBA, Ismail IB (2011) Soil moisture detection using electrical capacitance tomography (ECT) sensor. In: 2011 IEEE international conference on imaging systems and techniques (IST), IEEE, pp 83–88

  27. Rimpiläinen V, Poutiainen S, Heikkinen LM, Savolainen T, Vauhkonen M, Ketolainen J (2011) Electrical capacitance tomography as a monitoring tool for high-shear mixing and granulation. Chem Eng Sci 66(18):4090–4100

    Article  Google Scholar 

  28. Rimpiläinen V, Heikkinen LM, Vauhkonen M (2012) Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying characterized with volumetric electrical capacitance tomography. Chem Eng Sci 75:220–234

    Article  Google Scholar 

  29. Watzenig D, Fox C (2009) A review of statistical modelling and inference for electrical capacitance tomography. Meas Sci Technol 20(5):052,002

    Article  Google Scholar 

  30. Soleimani M, Lionheart WR (2005) Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Meas Sci Technol 16(10):1987

    Article  Google Scholar 

  31. Kaipio JP, Somersalo E (2005) Statistical and computational inverse problems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  32. Liu D, Kolehmainen V, Siltanen S, Seppanen A, Laukkanen AM (2015a) Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Probl Imaging 9:211–229

    Article  MathSciNet  Google Scholar 

  33. Liu D, Kolehmainen V, Siltanen S, Seppänen A (2015b) A nonlinear approach to difference imaging in EIT; assessment of the robustness in the presence of modelling errors. Inverse Prob 31(035):012

    MathSciNet  MATH  Google Scholar 

  34. Liu D, Kolehmainen V, Siltanen S, Laukkanen AM, Seppänen A (2016) Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors. IEEE Trans Biomed Eng 63(9):1956–1965

    Article  Google Scholar 

  35. Voss A, Pour-Ghaz M, Vauhkonen M, Seppänen A (2017) Difference reconstruction methods for electrical capacitance tomography imaging of two-dimensional moisture flow in concrete. In: The 9th international conference on inverse problems in engineering (ICIPE), Waterloo, Canada

  36. Process Tomography Limited P (1999) Electrical capacitance tomography system type PTL300 instruction manual. Software 2.3, Issue 5, http://www.tomography.com/support.htm

  37. Powers TC, Copeland LE, Hayes JC, Mann HM (1954) Permeablity of portland cement paste. J Proc 51:285–298

    Google Scholar 

  38. Powers TC (1958) Structure and physical properties of hardened portland cement paste. J Am Ceram Soc 41(1):1–6

    Article  Google Scholar 

  39. Pleinert H, Sadouki H, Wittmann FH (1998) Determination of moisture distributions in porous building materials by neutron transmission analysis. Mater Struct 31(4):218–224

    Article  Google Scholar 

  40. Cnudde V, Dierick M, Vlassenbroeck J, Masschaele B, Lehmann E, Jacobs P, Van Hoorebeke L (2008) High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials. Nucl Instrum Methods Phys Res Sect B 266(1):155–163

    Article  Google Scholar 

  41. Brew DRM, De Beer FC, Radebe MJ, Nshimirimana R, McGlinn PJ, Aldridge LP, Payne TE (2009) Water transport through cement-based barriers—a preliminary study using neutron radiography and tomography. Nucl Instrum Methods Phys Res Sect A 605(1):163–166

    Article  Google Scholar 

  42. Kanematsu M, Maruyama I, Noguchi T, Iikura H, Tsuchiya N (2009) Quantification of water penetration into concrete through cracks by neutron radiography. Nucl Instrum Methods Phys Res Sect A 605(1):154–158

    Article  Google Scholar 

  43. Zhang P, Wittmann FH, Tj Zhao, Lehmann EH (2010a) Neutron imaging of water penetration into cracked steel reinforced concrete. Phys B 405(7):1866–1871

    Article  Google Scholar 

  44. Zhang P, Wittmann FH, Zhao TJ, Lehmann EH, Tian L, Vontobel P (2010b) Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography. Nucl Instrum Methods Phys Res Sect A 620(2):414–420

    Article  Google Scholar 

  45. Zhang P, Wittmann FH, Zhao TJ, Lehmann EH, Vontobel P (2011) Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl Eng Des 241(12):4758–4766

    Article  Google Scholar 

  46. Li W, Pour-Ghaz M, Trtik P, Wyrzykowski M, Münch B, Lura P, Vontobel P, Lehmann E, Weiss WJ (2016) Using neutron radiography to assess water absorption in air entrained mortar. Constr Build Mater 110:98–105

    Article  Google Scholar 

  47. Pour-Ghaz M, Rajabipour F, Couch J, Weiss J (2009) Numerical and experimental assessment of unsaturated fluid transport in saw-cut (notched) concrete elements. ACI Spec Publ 266:73–86

    Google Scholar 

  48. Roels S, Carmeliet J, Hens H, Adan O, Brocken H, Cerny R, Pavlik Z, Ellis AT, Hall C, Kumaran K et al (2004) A comparison of different techniques to quantify moisture content profiles in porous building materials. J Therm Envel Build Sci 27(4):261–276

    Article  Google Scholar 

  49. Roels S, Carmeliet J (2006) Analysis of moisture flow in porous materials using microfocus x-ray radiography. Int J Heat Mass Transf 49(25):4762–4772

    Article  Google Scholar 

  50. Baker PH, Bailly D, Campbell M, Galbraith GH, McLean RC, Poffa N, Sanders CH (2007) The application of x-ray absorption to building moisture transport studies. Measurement 40(9):951–959

    Article  Google Scholar 

  51. Zhang M, He Y, Ye G, Lange DA, van Breugel K (2012) Computational investigation on mass diffusivity in portland cement paste based on x-ray computed microtomography (\(\mu\)CT) image. Constr Build Mater 27(1):472–481

    Article  Google Scholar 

  52. Gummerson RJ, Hall C, Hoff WD, Hawkes R, Holland GN, Moore WS (1979) Unsaturated water flow within porous materials observed by NMR imaging. Nature 218:56–57

    Article  Google Scholar 

  53. Beyea S, Balcom B, Bremner T, Prado P, Green D, Armstrong R, Grattan-Bellew P (1998) Magnetic resonance imaging and moisture content profiles of drying concrete. Cem Concr Res 28(3):453–463

    Article  Google Scholar 

  54. Bohris A, Goerke U, McDonald P, Mulheron M, Newling B, Le Page B (1998) A broad line nmr and mri study of water and water transport in portland cement pastes. Magn Reson Imaging 16(5):455–461

    Article  Google Scholar 

  55. Balcom BJ, Barrita J, Choi C, Beyea S, Goodyear D, Bremner T (2003) Single-point magnetic resonance imaging MRI of cement based materials. Mater Struct 36(3):166

    Article  Google Scholar 

  56. Cano-Barrita PdJ, Balcom B, Bremner T, MacMillan M, Langley W (2004) Moisture distribution in drying ordinary and high performance concrete cured in a simulated hot dry climate. Mater Struct 37(8):522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Voss.

Ethics declarations

Funding

This study was funded by the Academy of Finland (Projects 270174, 303801 and 273536, and the Finnish Centre of Excellence in Inverse modelling and imaging).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5091 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, A., Hänninen, N., Pour-Ghaz, M. et al. Imaging of two-dimensional unsaturated moisture flows in uncracked and cracked cement-based materials using electrical capacitance tomography. Mater Struct 51, 68 (2018). https://doi.org/10.1617/s11527-018-1195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1195-y

Keywords

Navigation