Skip to main content
Log in

Three-Dimensional Electrical Impedance Tomography to Monitor Unsaturated Moisture Ingress in Cement-Based Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The development of tools to monitor unsaturated moisture flow in cement-based material is of great importance, as most degradation processes in cement-based materials take place in the presence of moisture. In this paper, the feasibility of electrical impedance tomography (EIT) to monitor three-dimensional (3D) moisture flow in mortar containing fine aggregates is investigated. In the experiments, EIT measurements are taken during moisture ingress in mortar, using electrodes attached on the outer surface of specimens. For EIT, the so-called difference imaging scheme is adopted to reconstruct the change of the 3D electrical conductivity distribution within a specimen caused by the ingress of water into mortar. To study the ability of EIT to detect differences in the rate of ingress, the experiment is performed using plain water and with water containing a viscosity-modifying agent yielding a slower flow rate. To corroborate EIT, X-ray computed tomography (CT) and simulations of unsaturated moisture flow are carried out. While X-ray CT shows contrast with respect to background only in highly saturated regions, EIT shows the conductivity change also in the regions of low degree of saturation. The results of EIT compare well with simulations of unsaturated moisture flow. Moreover, the EIT reconstructions show a clear difference between the cases of water without and with the viscosity-modifying agent and demonstrate the ability of EIT to distinguish between different flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. X-ray CT images show the water reservoir at the center of the specimen due to the orientation of the sample during testing (shown in Fig. 5).

References

  • Abramoff, M., Magalhaes, P., Ram, S.: Image processing with Image. J. Biol. Med. Phys. Biomed. 11(7), 36–42 (2004)

    Google Scholar 

  • Adler, A., Lionheart, W.R.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)

    Article  Google Scholar 

  • ASTM: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory (2006)

  • Auroy, M., Poyet, S., Le Bescop, P., Torrenti, J.M., Charpentier, T., Moskura, M., Bourbon, X.: Impact of carbonation on unsaturated water transport properties of cement-based materials. Cement Concrete Res. 74, 44–58 (2015)

    Article  Google Scholar 

  • Bauters, T., DiCarlo, D., Steenhuis, T., Parlange, J.: Soil water content dependent wetting front characteristics in sands. J. Hydrol. 232, 244–254 (2000)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media, 2nd edn. Dover Publications Inc, New York (1988)

    Google Scholar 

  • Beck, A., Bental, A.: On the solution of the Tikhonov regularization of the least squares problem. SIAM J. Optimiz. 17(1), 98–118 (2006)

    Article  Google Scholar 

  • Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002)

    Article  Google Scholar 

  • Borsic, A., Comina, C., Foti, S., Lancellotta, R., Musso, G.: Imaging heterogeneities with electrical impedance tomography: laboratory results. Géotechnique 55(7), 539–547 (2005)

    Article  Google Scholar 

  • Bouchette, G., Church, P., Mcfee, J., Adler, A.: Imaging of compact objects buried in underwater sediments using electrical impedance tomography. Geosci. Remote Sensing 52(2), 1407–1417 (2014)

    Article  Google Scholar 

  • Buettner, M., Ramirez, A., Daily, W.: Electrical resistance tomography for imaging concrete structures. In: Structural Materials Technology an NDT Conference, San Diego, CA (1996a)

  • Buettner, M., Ramirez, A., Daily, W.: Electrical resistance tomography for imaging the spatial distribution of moisture in pavement sections. In: Structural Materials Technology an NDT Conference, San Diego, CA (1996b)

  • Chen, Q., Gingras, M., Balcom, B.: A magnetic resonance study of pore filling processes during spontaneous imbibition in Berea sandstone. J. Chem. Phys. 119(18), 9609–9616 (2003)

    Article  Google Scholar 

  • Cheng, K.S., Isaacson, D., Newell, J., Gisser, D.: Electrode models for electric current computed tomography. IEEE. Trans. Bio-Med. Eng. 36(9), 918–924 (1989)

    Article  Google Scholar 

  • Comina, C., Cosentini, R., Della Vecchia, G., Foti, S., Musso, G.: Hydrochemomechanical processes in soil samples: monitoring through electrical resistivity tomography. In: EPJ Web of Conferences, EDP Sciences, vol. 6, p. 22012 (2010)

  • Comina, C., Cosentini, R.M., Della Vecchia, G., Foti, S., Musso, G.: 3D-electrical resistivity tomography monitoring of salt transport in homogeneous and layered soil samples. Acta Geotech. 6(4), 195–203 (2011)

    Article  Google Scholar 

  • Cosentini, R.M., Della Vecchia, G., Foti, S., Musso, G.: Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography. Géotechnique 62(7), 583–594 (2012)

    Article  Google Scholar 

  • Daily, W., Ramirez, A., Binley, A., Henry-Poulter, S.: Electrical resistance tomography of concrete structures. In: ECAPT94: 3rd European Concerted Action Meeting on Process Tomography, Lisbon (1994)

  • Deinert, M., Parlange, J., Steenhuis, T.J.T., Ünlü, K., Cady, K.: Measurement of fluid contents and wetting front profiles by real-time neutron radiography. J. Hydrol. 290(3–4), 191–201 (2004)

    Google Scholar 

  • Dierke, C., Werban, U.: Relationships between gamma-ray data and soil properties at an agricultural test site. Geoderma 199, 90–98 (2013)

    Article  Google Scholar 

  • Dormieux, L., Kondo, D., Ulm, F.: Microporomechanics, 1st edn. Wiley, West Sussex (2006)

    Book  Google Scholar 

  • Du Plooy, R., Villain, G., Palma Lopes, S., Ihamouten, A., Dérobert, X., Thauvin, B.: Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study. Mater. Struct. 48(1), 369–386 (2015)

    Article  Google Scholar 

  • Duliu, O.G., Rizescu, C.T., Ricman, C.: Dual energy gamma-ray axial computer tomography investigation of some metamorphic and sedimentary rocks. Neues Jahrbuch fòr Geologie und Paläontolgie 228, 343–362 (2003)

    Google Scholar 

  • Eyuboglu, M., Birgul, O., Ider, Y.Z.: A dual modality system for high resolution-true conductivity imaging. In: Proceedings of the XI International Conference on Electrical Bioimpedance (ICEBI), pp. 409–413 (2001)

  • Feeman, T.: The Mathematics of Medical Imaging, 1st edn. Springer Science, LLC., New York (2010)

    Book  Google Scholar 

  • Ford, S., Shane, J., Mason, T.: Assignment of features in impedance spectra of the cement-paste/steel system. Cement Concrete Res. 28(12), 1737–1751 (1998)

    Article  Google Scholar 

  • Gélis, C., Revil, A., Cushing, M., Jougnot, D., Lemeille, F., Cabrera, J., De Hoyos, A., Rocher, M.: Potential of electrical resistivity tomography to detect fault zones in limestone and argillaceous formations in the experimental platform of Tournemire, France. Pure Appl. Geophys. 167(11), 1405–1418 (2010)

    Article  Google Scholar 

  • Ghasemzadeh, F., Pour-Ghaz, M.: Effect of damage on moisture transport in concrete. J. Mater. Civil Eng. 27(9), 04014242 (2014). doi:10.1061/(ASCE)MT.1943-5533.0001211

  • Gummerson, R., Hall, C., Hoff, W., Hawkes, R., Holland, G., Moore, W.: Unsaturated water flow within porous materials observed by NMR imaging. Nature 281, 56–57 (1979)

    Article  Google Scholar 

  • Haegel, F., Zimmerman, E., Esser, O., Breede, K., Huisman, J., Glaas, W., Berwix, J., Vereecken, H.: Determination of the distribution of air and water in porous media by electrical impedance tomography and magneto-electrical imaging. Nuclear Eng. D 241, 1959–1969 (2011)

    Article  Google Scholar 

  • Hallaji, M.: Monitoring Damage and Unsaturated Moisture Flow in Concrete with Electrical Resistance Tomography (ERT). Ph.D. thesis, North Carolina State University, Raleigh, NC (2015)

  • Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Mater. Struct. 23(8), 085,001 (2014)

    Article  Google Scholar 

  • Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials. Cement Concrete Res. 69, 10–18 (2015)

    Article  Google Scholar 

  • Hall, C., Hoff, W.: Water Transport in Brick, Stone and Concrete, 2nd edn. Taylor & Francis, London (2012)

    Google Scholar 

  • Heidary-Fyrozjaee, M.: Control of Displacement Fronts in Porous Media by Flow Rate Partitioning. Ph.D. thesis, University of Southern California, Los Angeles, CA (2008)

  • Heikkinen, L.M., Vilhunen, T., West, R.M., Vauhkonen, M.: Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13(12), 1855 (2002)

    Article  Google Scholar 

  • Isaacson, D.: Distinguishability of conductivities by electric current computed tomography. IEEE Trans. Med. Imaging 5(2), 91–95 (1986)

    Article  Google Scholar 

  • Jennings, H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cement Concrete Res. 30(1), 101–116 (2000)

    Article  Google Scholar 

  • Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    Google Scholar 

  • Kanematsu, M., Maruyama, I., Noguchi, T., Iikura, H., N, T.: Quantification of water penetration into concrete through cracks by neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A 605(1–2), 154–158 (2009)

    Article  Google Scholar 

  • Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P., Kaipio, J.: Electrical resistance tomography imaging of concrete. Cement Concrete Res. 40, 137–145 (2010)

    Article  Google Scholar 

  • Kolehmainen, V., Vauhkonen, M., Karjalainen, P., Kaipio, J.: Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. Physiol. Meas. 18(4), 289 (1997)

    Article  Google Scholar 

  • Krautblatter, M., Hauck, C.: Electrical resistivity tomography monitoring of permafrost in solid rock walls. J. Geophys. Res. Earth 112(F2) (2007)

  • Kuras, O., Pritchard, J., Meldrum, P., Chambers, J., Wilkinson, P., Ogilvy, R., Wealthall, G.: Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). Appl. Geophys. 341, 868–885 (2009)

    Google Scholar 

  • LaBrecque, D., Ramirez, A., Daily, W., Binley, A.M., Schima, S.: ERT monitoring of environmental remediation processes. Meas. Sci. Technol. 7(3), 375 (1996)

    Article  Google Scholar 

  • Leech, C., Lockington, D., Hooton, R., Galloway, G., Cowin, G., Dux, P.: Validation of Mualem’s conductivity model and prediction of saturated permeability from sorptivity. ACI Mater. J. 105(1), 44–51 (2008)

    Google Scholar 

  • Liu, D., Kolehmainen, V., Siltanen, S., Laukkanen, A., Seppänen, A.: Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Probl. Imaging 9(1) (2015)

  • McCarter, W.: Monitoring the influence of water and ionic ingress on cover zone concrete subjected to repeated absorption. Cement Concrete Aggr. 18(1), 55–63 (1996a)

    Article  Google Scholar 

  • McCarter, W., Ezirim, H., Emerson, M.: Properties of concrete in the cover zone: water penetration, sorptivity, and ionic ingress. Mag. Concrete Res. 48(176), 149–156 (1996b)

    Article  Google Scholar 

  • McCarter, W., Chrisp, T., Starrs, G., Adamson, A., Owens, E., Basheer, P., Nanukuttan, S., Srinivasan, S., Holmes, N.: Developments in performance monitoring of concrete exposed to extreme environments. J. Infrastruct. Syst. 18(3), 167–175 (2012)

    Article  Google Scholar 

  • McCarter, W., Watson, D.: Wetting and drying of coverzone concrete. Inst. Civ. Eng. Struct. Build. 112, 227–236 (1997)

    Article  Google Scholar 

  • Merz, S., Polhmeier, A., Vanderborght, J., van Dusschoten, D., Vereecken, H.: Moisture profiles of the upper soil layer during evaporation monitored by NMR. Water Resour. Res. 50(6), 5184–5195 (2014)

    Article  Google Scholar 

  • MSDS: Pelco electrically-conductive silver paint (2016)

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Nielsen, A.: Gamma-ray-attenuation used for measuring the moisture content and homogeneity of porous concrete. Build Sci. 7(4), 257–263 (1972)

    Article  Google Scholar 

  • Nimmer, R.E., Osiensky, J.L., Binley, A.M., Sprenke, K.F., Williams, B.C.: Electrical resistivity imaging of conductive plume dilution in fractured rock. Hydrogeol. J. 15(5), 877–890 (2007)

    Article  Google Scholar 

  • Nizovtsev, M., Stankus, S., Sterlyagov, A., Terekhov, V., RA, K.: Determination of moisture diffusivity in porous materials using gamma-method. Int. J. Heat Mass Transf. 54(17–18), 4161–4167 (2008)

    Article  Google Scholar 

  • Perlo, J., Danieli, E., Perlo, J., Blümich, B., Casanova, F.: Optimized slim-line logging NMR tool to measure soil moisture in situ. J. Mag. Res. 233, 74–79 (2013)

    Article  Google Scholar 

  • Pires, L.F., Bacchi, O.O., Reichardt, K.: Gamma ray computed tomography to evaluate wetting/drying soil structure changes. Nucl. Instrum. Meth. B 229(3), 443–456 (2005)

    Article  Google Scholar 

  • Polydorides, N., Lionheart, W.: A matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13(12), 1871–1883 (2002)

    Article  Google Scholar 

  • Pour-Ghaz, M., Spragg, R., Weiss, J.: Moisture profiles and diffusion coefficients in mortars containing shrinkage reducing admixtures. In: International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete Technical University of Denmark, pp 197–206 (2010)

  • Pour-Ghaz, M.: Detecting Damage in Concrete Using Electrical Methods and Assessing Moisture Movement in Cracked Concrete. Ph.D. thesis, Purdue University, Indiana (2011)

  • Pour-Ghaz, M., Rajabipour, F., Couch, J., Weiss, J.: Numerical and experimental assessment of unsaturated fluid transport in saw-cut (notched) concrete elements. ACI Spec. Publ. 266, 73–86 (2009)

    Google Scholar 

  • Pour-Ghaz, M., Weiss, J.: Detecting the time and location of cracks using electrically conductive surfaces. Cement Concrete Comp. 33(1), 116–123 (2011)

    Article  Google Scholar 

  • Poyet, S., Charles, S., Honore, N., L’hostit, V.: Assessment of unsaturated water transport properties in an old concrete: determination of the pore-interaction factor. Cement Concrete Res. 41(10), 1015–1023 (2011)

    Article  Google Scholar 

  • Raoufi, K., Schlitter, J., Bentz, D., Weiss, J.: Parametric assessment of stress development and cracking in internally cured restrained mortars experiencing autogenous deformations and thermal loading. Adv. Civil Eng. 2011, 16, 870128 (2011). doi:10.1155/2011/870128

  • Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (1931)

    Article  Google Scholar 

  • Richardson, I.: The nature of CSH in hardened cements. Cement Concrete Res. 29(8), 1131–1147 (1999)

    Article  Google Scholar 

  • Roels, S., Carmeliet, J., Hens, H., Adan, O., Brocken, H., Cerny, R., Pavlik, Z., Ellis, A., Hall, C., Kumaran, K.: A comparison of different techniques to quantify moisture content profiles in porous building materials. J. Thermal. Env. Build. Sci. 27(4), 261–276 (2004)

    Google Scholar 

  • Roels, S., Carmeliet, J.: Analysis of moisture flow in porous materials using microfocus X-ray radiography. Int. J. Heat Mass Transf. 49(25–26), 4762–4772 (2006)

    Article  Google Scholar 

  • Schöberl, J.: NETGEN an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci. 1(1), 41–52 (1997)

    Article  Google Scholar 

  • Seppänen, A., Hallaji, M., Pour-Ghaz, M.: Electrical impedance tomography-based sensing skin for detection of damage in concrete. In: 11th European Conference on Non-Destructive Testing (ECNDT 2014), Prague, Czech Republic (2014)

  • Šimůnek, J., van Genuchten, M.T., Šejna, M.: Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7(2), 587–600 (2008)

    Article  Google Scholar 

  • Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R., Sandberg, S.: A 3D ERT study of solute transport in a large experimental tank. J. Appl. Geophys. 49(4), 211–229 (2002)

    Article  Google Scholar 

  • Smyl, D., Ghasemzadeh, F., Pour-Ghaz, M.: Modeling Water Absorption in Concrete and Mortar with Distributed Damage. Constr. Build. Mater. (2016)

  • Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992)

    Article  Google Scholar 

  • Spragg, R.P., Castro, J., Li, W., Pour-Ghaz, M., Huang, P.T., Weiss, J.: Wetting and drying of concrete using aqueous solutions containing deicing salts. Cement Concrete Comp. 33(5), 535–542 (2011)

    Article  Google Scholar 

  • Stacey, R.: Electrical Impedance Tomography, Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences. Tech. Rep. SGP-TR-182, Stanford University (2006)

  • Tiana, I., Heck, R., Elliot, T.: Application of X-ray computed tomography to soil science: a literature review. Can. J. Soil. Sci. 88(1), 1–20 (2007)

    Google Scholar 

  • Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  • Ulm, F., Constantinides, G., Heukamp, F.: Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Mater. Struct. 37, 43–58 (2004)

    Article  Google Scholar 

  • van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

  • van Genuchten, M.T., Nielson, D.R.: On describing and predicting the hydraulic properties of unsaturated soils. Ann. Geophys. 3, 615–628 (1985)

    Google Scholar 

  • Vauhkonen, P.: Image Reconstruction in Three-dimensional Electrical Impedance Tomography. PhD thesis, University of Kuopio (2004)

  • Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17(2), 285–293 (1998)

    Article  Google Scholar 

  • Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, J.P.: Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46(9), 1150–1160 (1999)

    Article  Google Scholar 

  • Vauhkonen, M., Lionheart, W., Heikkinen, L., Vauhkonen, P., Kaipio, J.: A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol. Meas. 22, 107–111 (2001)

    Article  Google Scholar 

  • Villani, C., Spragg, R., Pour-Ghaz, M., Weiss, J.: The influence of pore solutions properties on drying in cementitious materials. J. Am. Ceram. Soc. 97, 386–393 (2014)

    Article  Google Scholar 

  • Vontobel, P., Lehmann, E., Carlson, W.D.: Comparison of X-ray and neutron tomography investigations of geological materials. IEEE Trans. Nucl. Sci. 52(1), 338–341 (2005)

    Article  Google Scholar 

  • Weiss, J., Pour-Ghaz, M.: Application of frequency selective circuits for crack detection in concrete elements. J. ASTM Int. 8(10), 1–11 (2011)

    Google Scholar 

  • Wildenschild, D., Vaz, C., Rivers, M., Rikard, D., Christensen, B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3), 285–297 (2002)

    Article  Google Scholar 

  • Williams, R.A., Beck, M.S.: Process Tomography: Principles, Techniques, and Applications. Butterworth-Heinemann, London (1995)

    Google Scholar 

  • Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Boin, M., Banhart, J., Manke, I.: 3d mapping of crystallographic phase distribution using energy-selective neutron tomography. Adv. Mater. 26(24), 4069–4073 (2014)

    Article  Google Scholar 

  • Zhang, P., Wittmann, F., Zhao, T., EH, L.: Neutron imaging of water penetration into cracked steel reinforced concrete. Phys. B 405(7), 1866–1871 (2010)

    Article  Google Scholar 

  • Zhang, P., Wittmann, F., Zhao, T., EH, L., Vontobel, P.: Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl. Eng. Des. 241(12), 4758–4766 (2011)

    Article  Google Scholar 

  • Zreda, M., Desilets, D., Ferré, T., Scott, R.: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 35(21) (2008). doi:10.1029/2008GL035655

Download references

Acknowledgments

This work was conducted in the Materials and Sensor Development Laboratory (MSDL) and Constructed Facilities Laboratory (CFL) at North Carolina State University (NCSU). The third author would like to acknowledge the support provided by Academy of Finland (projects 270174 and 273536). The authors would like to acknowledge the support which has made these laboratories and this research possible. The authors also thank the technical support of these laboratories. The authors greatly acknowledge the expertise of Dr. Gary Howell and Dr. Jianwei Dian at NCSU High-Performance Computing (HPC) for the technical assistance in implementing the Load Sharing Facility HPC environment used to compute the image reconstructions in this study. The authors would like to thank Dr. Ian Robertson from the NCSU College of Veterinary Medicine (CVM) for his assistance in using X-ray computed tomography facilities. All support is greatly appreciated and acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pour-Ghaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyl, D., Hallaji, M., Seppänen, A. et al. Three-Dimensional Electrical Impedance Tomography to Monitor Unsaturated Moisture Ingress in Cement-Based Materials. Transp Porous Med 115, 101–124 (2016). https://doi.org/10.1007/s11242-016-0756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0756-1

Keywords

Navigation