Skip to main content
Log in

Prediction of IC debonding failure of precracked FRP strengthened RC beams using global energy balance

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Reinforced concrete (RC) beams strengthened with fiber reinforced polymer (FRP) have been extensively investigated, but the failure load of precracked beams strengthened with FRP has not been fully studied yet. When structurally deficient RC beams are repaired or strengthened using FRP, flexural cracks due to service load usually appear on the beams. Strengthened beams with precracking have been rarely examined, and most existing methods for predicting premature failures ignore the precracking effect. This research proposes a method for predicting debonding failure induced by intermediate crack (IC) for FRP-strengthened beams with precracking. The method consists of a numerical study on structurally damaged RC beams retrofitted with FRP laminate in the tension side of the beam. The method also applies the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The simulated results are validated against published experimental data and show good correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Palucka T, Vincent BB (2016) History of composites. http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/composites/Composites_Overview.htm. Accessed 25 Aug 2016

  2. Tong L, Mouritz AP, Bannister MK (2002) 3D fibre-reinforced polymer composites. Elsevier, Oxford

    Google Scholar 

  3. Borri A, Corradi M, Sisti R, Buratti C, Belloni E, Moretti E (2015) Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing. Mater Struct 49(10):3957–3968

    Article  Google Scholar 

  4. Zamani Beydokhti E, Shariatmadar H (2016) Strengthening and rehabilitation of exterior RC beam–column joints using carbon-FRP jacketing. Mater Struct 49(12):5067–5083

    Article  Google Scholar 

  5. Aram MR, Czaderski C, Motavalli M (2008) Debonding failure modes of flexural FRP-strengthened RC beams. Compos B Eng 39(5):826–841

    Article  Google Scholar 

  6. Chajes MJ, Thomson TA, Januszka TF, Finch WW (1994) Flexural strengthening of concrete beams using externally bonded composite materials. Constr Build Mater 8(3):191–201

    Article  Google Scholar 

  7. Fanning PJ, Kelly O (2001) Ultimate response of RC beams strengthened with CFRP plates. J Compos Constr 5(2):122–127

    Article  Google Scholar 

  8. Garden H, Hollaway L (1997) A preliminary evaluation of carbon fibre reinforced polymer plates for strengthening reinforced concrete members. Proc ICE Struct Build 122(2):127–142

    Article  Google Scholar 

  9. Meier U, Winistorfer A (1995) 55 Retrofitting of structures through external bonding of CFRP sheets. In: Non-metallic (FRP) reinforcement for concrete structures: proceedings of the second international RILEM symposium. CRC Press, p 465

  10. Nakamura M, Sakai H, Yagi K, Tanaka T (1996) Experimental studies on the flexural reinforcing effect of carbon fiber sheet bonded to reinforced concrete beam. In: First international conference on composites in infrastructure

  11. Ritchie PA, Thomas DA, Lu L-W, Conelly GM (1991) External reinforcement of concrete beams using fiber reinforced plastics. ACI Struct J 88 (4):490–500

    Google Scholar 

  12. Saadatmanesh H, Ehsani MR (1991) RC beams strengthened with GFRP plates. I: experimental study. J Struct Eng 117(11):3417–3433

    Article  Google Scholar 

  13. Nguyen DM, Chan TK, Cheong HK (2001) Brittle failure and bond development length of CFRP-concrete beams. J Compos Constr 5(1):12–17

    Article  Google Scholar 

  14. Ross CA, Jerome DM, Tedesco JW, Hughes ML (1999) Strengthening of reinforced concrete beams with externally bonded composite laminates. ACI Struct J 96(2):212–220

    Google Scholar 

  15. Kabir M, Fawzia S, Chan T, Badawi M (2016) Numerical studies on CFRP strengthened steel circular members under marine environment. Mater Struct 49(10):4201–4216

    Article  Google Scholar 

  16. Zhang S, Teng J (2015) End cover separation in RC beams strengthened in flexure with bonded FRP reinforcement: simplified finite element approach. Mater Struct 49(6):2223–2236

    Article  Google Scholar 

  17. Al-Saidy A, Saadatmanesh H, El-Gamal S, Al-Jabri K, Waris B (2015) Structural behavior of corroded RC beams with/without stirrups repaired with CFRP sheets. Mater Struct 49(9):3733–3747

    Article  Google Scholar 

  18. Alfano G, De Cicco PD, Fiorenzo Prota A (2011) Intermediate debonding failure of RC beams retrofitted in flexure with FRP: experimental results versus prediction of codes of practice. J Compos Constr 16(2):185–195

    Article  Google Scholar 

  19. Benjeddou O, Ouezdou MB, Bedday A (2007) Damaged RC beams repaired by bonding of CFRP laminates. Constr Build Mater 21(6):1301–1310

    Article  Google Scholar 

  20. Buyukozturk O, Hearing B (1998) Failure behavior of precracked concrete beams retrofitted with FRP. J Compos Constr 2(3):138–144

    Article  Google Scholar 

  21. Dong Y (2003) Static and fatigue performance of reinforced concrete beams retrofitted with external CFRP composites. PhD, University of Illinois

  22. Matthys S (2000) Structural behaviour and design of concrete members strengthened with externally bonded FRP reinforcement. Ghent University

  23. Huang L, Yan B, Yan L, Xu Q, Tan H, Kasal B (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Compos B Eng 91:569–578

    Article  Google Scholar 

  24. Verbruggen S, Tysmans T, Wastiels J (2014) TRC or CFRP strengthening for reinforced concrete beams: an experimental study of the cracking behaviour. Eng Struct 77:49–56

    Article  Google Scholar 

  25. Obaidat YT, Heyden S, Dahlblom O, Abu-Farsakh G, Abdel-Jawad Y (2011) Retrofitting of reinforced concrete beams using composite laminates. Constr Build Mater 25(2):591–597

    Article  Google Scholar 

  26. Smith ST, Teng J (2002) FRP-strengthened RC beams. I: review of debonding strength models. Eng Struct 24(4):385–395

    Article  Google Scholar 

  27. Achintha P, Burgoyne C (2008) Fracture mechanics of plate debonding. J Compos Constr 12(4):396–404

    Article  Google Scholar 

  28. Gunes O, Buyukozturk O, Karaca E (2009) A fracture-based model for FRP debonding in strengthened beams. Eng Fract Mech 76(12):1897–1909

    Article  Google Scholar 

  29. Hearing BP (2000) Delamination in reinforced concrete retrofitted with fiber reinforced plastics. Massachusetts Institute of Technology, United States of America

  30. Hoque N, Achintha M, Jumaat MZ A critical review of Fracture energy based FRP debonding models for externally reinforced beam, Unpublished work

  31. Zidani MhB, Belakhdar K, Tounsi A (2015) Finite element analysis of initially damaged beams repaired with FRP plates. Compos Struct 134:429–439

    Article  Google Scholar 

  32. Aslani F, Jowkarmeimandi R (2012) Stress–strain model for concrete under cyclic loading. Mag Concr Res 64(8):673–685

    Article  Google Scholar 

  33. Kent DC, Park R (1969) Inelastic behaviour of reinforced concrete members with cyclic loading. Citeseer

  34. Martínez-Rueda JE, Elnashai A (1997) Confined concrete model under cyclic load. Mater Struct 30(3):139–147

    Article  Google Scholar 

  35. Sima JF, Roca P, Molins C (2008) Cyclic constitutive model for concrete. Eng Struct 30(3):695–706

    Article  Google Scholar 

  36. Yankelevsky DZ, Reinhardt HW (1987) Model for cyclic compressive behavior of concrete. J Struct Eng 113(2):228–240

    Article  Google Scholar 

  37. Mander JB, Priestley MJ, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826

    Article  Google Scholar 

  38. Sinha B, Gerstle KH, Tulin LG (1964) Stress-strain relations for concrete under cyclic loading. In: ACI Journal Proceedings, vol 2. ACI

  39. Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Div 95(12):2543–2564

    Google Scholar 

  40. Branson DE (1968) Design procedures for computing deflections. In: ACI Journal Proceedings, vol 9

  41. Achintha PM, Burgoyne CJ (2009) Moment-curvature and strain energy of beams with external fiber-reinforced polymer reinforcement. ACI Struct J 106(1):20

    Google Scholar 

  42. Branson DE (1968) Design procedures for computing deflections. ACI Journal Proc 65(9):730–742

    Google Scholar 

  43. Hibbeler RC (2012) Structural analysis. Pearson, Upper Saddle River

    Google Scholar 

  44. Sharif A, Al-Sulaimani G, Basunbul I, Baluch M, Ghaleb B (1994) Strengthening of initially loaded reinforced concrete beams using FRP plates. ACI Struct J 91(2):160–168

    Google Scholar 

  45. Garden H, Quantrill R, Hollaway L, Thorne A, Parke G (1998) An experimental study of the anchorage length of carbon fibre composite plates used to strengthen reinforced concrete beams. Constr Build Mater 12(4):203–219

    Article  Google Scholar 

  46. Rahimi H, Hutchinson A (2001) Concrete beams strengthened with externally bonded FRP plates. J Compos Constr 5(1):44–56

    Article  Google Scholar 

  47. Collins MP, Mitchell D (1987) Prestressed concrete basics. Canadian Prestressed Concrete Institute (CPCI), Ottawa

    Google Scholar 

  48. Shin HM (2000) Prestressed concrete. Dongmyoungsa, Seoul, Korea

    Google Scholar 

  49. Karihaloo BL, Abdalla H, Imjai T (2003) A simple method for determining the true specific fracture energy of concrete. Mag Concr Res 55(5):471–481

    Article  Google Scholar 

  50. Wu Z, Shao Y, Iwashita K, Sakamoto K (2007) Strengthening of preloaded RC beams using hybrid carbon sheets. J Compos Constr 11(3):299–307

    Article  Google Scholar 

  51. Al-Zaid RA, El-Sayed AK, Al-Negheimish AI, Shuraim AB, Alhozaimy AM (2014) Strengthening of structurally damaged wide shallow RC beams using externally bonded CFRP plates. Latin Am J Solids Struct 11(6):946–965

    Article  Google Scholar 

  52. Yongtao D (2003) Static and fatigue performance of reinforced concrete beams retrofitted with external CFRP composites. University of Illinois

  53. Arduini M, Nanni A (1997) Behavior of precracked RC beams strengthened with carbon FRP sheets. J Compos Constr 1(2):63–70

    Article  Google Scholar 

  54. Wang J-S, Suo Z (1990) Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches. Acta Metall Mater 38(7):1279–1290

    Article  Google Scholar 

  55. ACI-4402R-08 (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. American Concrete Institute, Farmington Hill, MI

    Google Scholar 

  56. The Concrete Society (UK) (2012) Technical Report no. 55—design guidance for strengthening concrete structures using fibre composite materials

  57. Teng J, Smith ST, Yao J, Chen JF (2003) Intermediate crack-induced debonding in RC beams and slabs. Constr Build Mater 17(6):447–462

    Article  Google Scholar 

  58. Rosenboom O, Rizkalla S (2008) Modeling of IC debonding of FRP-strengthened concrete flexural members. J Compos Constr 12(2):168–179

    Article  Google Scholar 

  59. Achintha M, Burgoyne C (2013) Fracture energy of the concrete–FRP interface in strengthened beams. Eng Fract Mech 110:38–51

    Article  Google Scholar 

  60. Hillerborg A (1983) Concrete fracture energy tests performed by 9 laboratories according to a draft RILEM recommendation: Report to RILEM TC50-FMC. Report TVBM

  61. Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111(10):1227–1241

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support towards this research by The University of Malaya-Malaysia, High Impact Research Grant (HIRG) No. UM.C/625/1/HIR/MOHE/ENG/36 (16001-00-D000036)—“Strengthening Structural Elements for Load and Fatigue”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Zamin Jumaat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, N., Shukri, A.A. & Jumaat, M.Z. Prediction of IC debonding failure of precracked FRP strengthened RC beams using global energy balance. Mater Struct 50, 210 (2017). https://doi.org/10.1617/s11527-017-1077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1077-8

Keywords

Navigation