Skip to main content
Log in

Confined concrete model under cyclic load

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A uniaxial cyclic model for confined and unconfined concrete is developed. Starting from an existing model, the cyclic rules to define inelastic strain and degradation of strength and stiffness are first reviewed and then modified to produce a new concrete model with enhanced performance. Comparisons at the stress-strain level between the new and existing concrete models reveal the adequacy of the new model in terms of numerical stability and increasing degradation of strength and stiffness under increasing cyclic strain. The proposed model is validated by comparing analytical predictions with experimental results of reinforced concrete members under cyclic and dynamic loading. Good agreement is observed between analysis and experiments, confirming the ability of the model to predict the cyclic and dynamic behavior of reinforced concrete members with mixed axial-flexural response characteristics.

Résumé

Un modèle cyclique uniaxial pour le béton confiné et non confiné est développé. Sur la base d'un modèle existant, les règles cycliques qui définissent la déformation inélastique et la dégradation de la rigidité et de la résistance sont analysées et ensuite modifiées afin de produire un nouveau modèle plus performant. Des comparaisons entre le nouveau modèle et des modèles existants au niveau de la contrainte-déformation montrent l'adéquation du nouveau modèle en ce qui concerne la stabilité numérique et l'évolution de la dégradation de la rigidité et de la résistance sous déformation cyclique. Le modèle proposé est validé par comparaison des prévision analytiques avec des résultats expérimentaux sur des éléments de béton armé soumis à des charges cycliques et dynamiques. Une bonne concordance est observée entre l'analyse et les expériences, confirmant ainsi la capacité du modèle à prédire le comportement cyclique et dynamique des éléments en béton armé soumis à l'action combinée des efforts axiaux et de flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comité Euro-International du Béton, ‘Response of R.C. critical regions under large amplitude reversed actions’, Bulletin D'Information 161 (CEB Laussane, 1983).

    Google Scholar 

  2. Mander, J.B., Priestley J.N. and Park, R., ‘Theoretical stress-strain model for confined concrete’,ASCE J. Struct. Div. 114 (12) (1989) 1804–1826.

    Google Scholar 

  3. Sinha, B.P., Gerstle, K. H. and Tulin, L. G. ‘Stress-strain relation for concrete under cyclic loading’,J. Amer. Concr. Inst. 61 (2) (1964) 195–211.

    Google Scholar 

  4. Karsan, I.D., and Jirsa, J.O., ‘Behaviour of concrete under compressive loadings’,J. Struct. Div. 95 (12) (1969) 2543–2563.

    Google Scholar 

  5. Popovics, S. ‘A numerical approach to the complete stress-strain curves for concrete’,Cem. and Concr. Res. 3 (5) (1973) 583–500.

    Article  Google Scholar 

  6. Desayi, P., Sundara Raja Iyengar, K. T. and Sanjeeva Reddy, T. ‘Stress-strain characteristics of concrete confined in steel spirals under repeated loading’,Mater. Struct. 12 (71) (1979) 375–383.

    Google Scholar 

  7. Yankelevsky, D.Z. and Reinhardt, H.W., ‘Model for cyclic compressive behaviour of concrete’,ASCE J. Struct. Eng. 113 (2) (1987) 228–239.

    Article  Google Scholar 

  8. Izzudin, B.A., ‘Nonlinear dynamic analysis of framed structures’, PhD. Thesis, Imperial College, London (1991).

    Google Scholar 

  9. Izzudin, B.A., Karayannis, C.G. and Elnashai, A.S. ‘Advanced non-linear formulation for reinforced concrete beam-columns’.ASCE J. Struct. Engg. 120 (10) (1994) 2913–2934.

    Article  Google Scholar 

  10. Park, R., Priestley, J.N. and Gill, W.D., ‘Ductility of square-confined concrete columns’,ASCE J. Struct. Div. 108 (4) (1982) 929–950.

    Google Scholar 

  11. Petersson, H. and Popov, E.P., ‘Constitutive relations for generalized loadings’,ASCE J. Engg. Mech. Div. 103 (4) (1977) 611–627.

    Google Scholar 

  12. Park, R., ‘Evaluation of ductility of structures and structural assemblages from laboratory testing,Bull. N. Z. National Soc. for Earth. Engg. 22 (3) (1989) 155–165.

    Google Scholar 

  13. Gauvin, J., Jeandidier, C., Gaubert, J.C., Queval, J.C. and Vaghi, H. ‘Essais Sismiques de Poteaux en Béton Armé’, CEA Note Technique D.M.T./78/177/(1978)

  14. Flcury, F., Ile, N., Merabet, O. and Reynouard. J.M. ‘A R/C element for the nonlinear structural seismic analysis’, in ‘Proceedings of the Second European Conference on Structural Dyamics-EURODYN'93, Trondheim, June, 1993 (A.A. Balkema, 1993) 161–167.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Rueda, J.E., Elnashai, A.S. Confined concrete model under cyclic load. Mat. Struct. 30, 139–147 (1997). https://doi.org/10.1007/BF02486385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486385

Keywords

Navigation