Skip to main content
Log in

Water uptake experiments of historic construction materials from Venice by neutron imaging and PGAI methods

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

We aimed at establishing a multidisciplinary procedure to characterize porous historic construction materials, whose properties (physical and mechanical, as well as chemical composition) can be affected by the presence and action of water content and salt ions. The whole procedure’s objective is to relate qualitative to quantitative information, to get an evaluation of the selected material’s mechanical properties. We developed a neutron-based investigation technique to assess the condition of historic buildings’ construction materials. Neutron radiography and tomography, as well as prompt-gamma activation analysis and imaging were applied to various types of stone blocks (which can be characterized e.g. with different levels of liquid permeability in saturated conditions) to detect the uptake of water and salt ions in porous construction materials of cultural heritage significance. The results enlighten the accurate water intrusion patterns, the evaluation of the water content in unsaturated conditions, the movement of water and salt contents inside the stone samples. The established methodology may find its application niche in the non-destructive assessment of historic and contemporary building construction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verstrynge E, Adriaens R, Elsen J, Balen KV (2014) Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone. Constr Build Mater 54:78–90. doi:10.1016/j.conbuildmat.2013.12.024

    Article  Google Scholar 

  2. Benedetti A, Marani F, Ramalho M (2010) Mechanical properties of masonry with environmental degradation. In: Proceedings of the 8th international masonry conference. Technische Universitat Dresden, Dresden, pp 1–8

  3. Bellopede R, Manfredotti L (2006) Ultrasonic sound test on stone: comparison of indirect and direct methods under various test conditions. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage, weathering and conservation. Taylor & Francis Group, London, pp 539–546

    Google Scholar 

  4. Vandevoorde D, Cnudde V, Dewanckele J et al (2013) YOuth in the COnservation of CUltural Heritage, YOCOCU 2012 validation of in situ applicable measuring techniques for analysis of the water adsorption by stone. Procedia Chem 8:317–327. doi:10.1016/j.proche.2013.03.039

    Article  Google Scholar 

  5. Pleinert H, Degueldre C (1995) Neutron radiographic measurement of porosity of crystalline rock samples: a feasibility study. J Contam Hydrol 19:29–46. doi:10.1016/0169-7722(95)00007-I

    Article  Google Scholar 

  6. Cnudde V, Cwirzen A, Masschaele B, Jacobs PJS (2009) Porosity and microstructure characterization of building stones and concretes. Eng Geol 103:76–83. doi:10.1016/j.enggeo.2008.06.014

    Article  Google Scholar 

  7. Martin WD, Putman BJ, Kaye NB (2013) Using image analysis to measure the porosity distribution of a porous pavement. Constr Build Mater 48:210–217. doi:10.1016/j.conbuildmat.2013.06.093

    Article  Google Scholar 

  8. Abell AB, Willis KL, Lange DA (1999) Mercury intrusion porosimetry and image analysis of cement-based materials. J Colloid Interface Sci 211:39–44. doi:10.1006/jcis.1998.5986

    Article  Google Scholar 

  9. Panesar DK, Francis J (2014) Influence of limestone and slag on the pore structure of cement paste based on mercury intrusion porosimetry and water vapour sorption measurements. Constr Build Mater 52:52–58. doi:10.1016/j.conbuildmat.2013.11.022

    Article  Google Scholar 

  10. Jasti JK, Fogler HS (1992) Application of neutron radiography to image flow phenomena in porous media. AIChE J 38:481–488. doi:10.1002/aic.690380402

    Article  Google Scholar 

  11. Pleinert H, Lehmann E (1997) Determination of hydrogenous distributions transmission analysis. Phys B Condens Matter 234:1030–1032. doi:10.1016/S0921-4526(96)01252-5

    Article  Google Scholar 

  12. Hassanein R, Meyer HO, Carminati A et al (2006) Investigation of water imbibition in porous stone by thermal neutron radiography. J Phys Appl Phys 39:4284

    Article  Google Scholar 

  13. Pleinert H, Sadouki H, Wittmann FH (1998) Determination of moisture distributions in porous building materials by neutron transmission analysis. Mater Struct 31:218–224. doi:10.1007/BF02480418

    Article  Google Scholar 

  14. Lehmann EH, Vontobel P, Kardjilov N (2004) Hydrogen distribution measurements by neutrons. Appl Radiat Isot 61:503–509. doi:10.1016/j.apradiso.2004.03.075

    Article  Google Scholar 

  15. Kardjilov N, de Beer F, Hassanein R et al (2005) Scattering corrections in neutron radiography using point scattered functions. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 542:336–341. doi:10.1016/j.nima.2005.01.159

    Article  Google Scholar 

  16. Hassanein R, Lehmann E, Vontobel P (2005) Methods of scattering corrections for quantitative neutron radiography. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 542:353–360. doi:10.1016/j.nima.2005.01.161

    Article  Google Scholar 

  17. Hassanein R, de Beer F, Kardjilov N, Lehmann E (2006) Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics. Phys B Condens Matter 385–386(Part 2):1194–1196. doi:10.1016/j.physb.2006.05.406

    Article  Google Scholar 

  18. Kang M, Bilheux HZ, Voisin S et al (2013) Water calibration measurements for neutron radiography: application to water content quantification in porous media. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 708:24–31. doi:10.1016/j.nima.2012.12.112

    Article  Google Scholar 

  19. Cnudde V, Dierick M, Vlassenbroeck J et al (2008) High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266:155–163. doi:10.1016/j.nimb.2007.10.030

    Article  Google Scholar 

  20. Hall SA (2013) Characterization of fluid flow in a shear band in porous rock using neutron radiography. Geophys Res Lett 40:2613–2618. doi:10.1002/grl.50528

    Article  Google Scholar 

  21. Poulikakos LD, Gilani MS, Derome D et al (2013) Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl Radiat Isot 77:5–13. doi:10.1016/j.apradiso.2013.01.040

    Article  Google Scholar 

  22. de Beer FC, Middleton MF, Hilson J (2004) Neutron radiography of porous rocks and iron ore. Appl Radiat Isot 61:487–495. doi:10.1016/j.apradiso.2004.03.089

    Article  Google Scholar 

  23. Perfect E, Cheng C-L, Kang M et al (2014) Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: a review. Earth Sci Rev 129:120–135. doi:10.1016/j.earscirev.2013.11.012

    Article  Google Scholar 

  24. Hess K-U, Flaws A, Mühlbauer MJ et al (2011) Advances in high-resolution neutron computed tomography: adapted to the earth sciences. Geosphere. doi:10.1130/GES00566.1

    Google Scholar 

  25. Kaestner AP, Trtik P, Zarebanadkouki M et al (2016) Recent developments in neutron imaging with applications for porous media research. Solid Earth 7:1281–1292. doi:10.5194/se-7-1281-2016

    Article  Google Scholar 

  26. Trtik P, Hovind J, Grünzweig C et al (2015) Improving the spatial resolution of neutron imaging at Paul Scherrer Institut—the Neutron Microscope Project. Phys Procedia 69:169–176. doi:10.1016/j.phpro.2015.07.024

    Article  Google Scholar 

  27. Trtik P, Lehmann EH (2016) Progress in high-resolution neutron imaging at the Paul Scherrer Institut—the Neutron Microscope Project. J Phys: Conf Ser 746:12004

    Google Scholar 

  28. Murison J, Moosavi R, Schulz M et al (2015) Neutron tomography as a tool to study immiscible fluids in porous media without chemical dopants. Energy Fuels 29:6271–6276. doi:10.1021/acs.energyfuels.5b01403

    Article  Google Scholar 

  29. Roels S, Carmeliet J (2006) Analysis of moisture flow in porous materials using microfocus X-ray radiography. Int J Heat Mass Transf 49:4762–4772. doi:10.1016/j.ijheatmasstransfer.2006.06.035

    Article  MATH  Google Scholar 

  30. Derluyn H, Griffa M, Mannes D et al (2013) Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography. J Build Phys 36:353–374. doi:10.1177/1744259112473947

    Article  Google Scholar 

  31. Cnudde V, De Kock T, Boone M et al (2015) Conservation studies of cultural heritage: X-ray imaging of dynamic processes in building materials. Eur J Mineral 27:269–278. doi:10.1127/ejm/2015/0027-2444

    Article  Google Scholar 

  32. Belgya T, Kis Z, Szentmiklósi L et al (2008) A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor. J Radioanal Nucl Chem 278:713–718

    Article  Google Scholar 

  33. Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 779:116–123. doi:10.1016/j.nima.2015.01.047

    Article  Google Scholar 

  34. Szentmiklósi L, Belgya T, Révay Z, Kis Z (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor. J Radioanal Nucl Chem 286:501–505

    Article  Google Scholar 

  35. Szentmiklósi L, Kis Z, Belgya T, Berlizov A (2013) On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Radioanal Nucl Chem 298:1605–1611

    Article  Google Scholar 

  36. Anderson IS, McGreevy RL, Bilheux HZ (2009) Neutron imaging and applications. Springer, New York

    Google Scholar 

  37. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  38. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  Google Scholar 

  39. Guizzardi M, Derome D, Mannes D et al (2016) Electrical conductivity sensors for water penetration monitoring in building masonry materials. Mater Struct 49:2535–2547. doi:10.1617/s11527-015-0666-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Fabrizio Antonelli and Dr Alberto Conventi at IUAV—LAMA (Laboratory of Analysis of Ancient Materials at IUAV University of Venice) for their help and support. The authors acknowledge the financial support of the European Union’s 7th Framework Programme NMI3-II Transnational Access Programme (Grant Number 283883).

Funding

This study was funded by European Union’s 7th Framework Programme NMI3-II Transnational Access Programme (Grant Number 283883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kis, Z., Sciarretta, F. & Szentmiklósi, L. Water uptake experiments of historic construction materials from Venice by neutron imaging and PGAI methods. Mater Struct 50, 159 (2017). https://doi.org/10.1617/s11527-017-1004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1004-z

Keywords

Navigation