Skip to main content
Log in

Modelling of rheological and ageing properties of bitumen based on its chemical structure

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The aim of this research was the construction of a model to describe the rheological and the ageing behaviour of bitumen by its chemical properties. Therefore, linear combinations were determined considering the contents and the average molecular weights M n of the four substantial fractions of bitumen. These substantial fractions are the SARA fractions consisting of the saturates, aromatics, resins and asphaltenes. The determined linear combinations allow the description and prediction of different conventional and rheological parameters like the softening point T R&B and the needle penetration PEN as well as the complex shear modulus |G*| and the phase angle δ at different temperatures. Furthermore, the ageing behaviour was captured by ageing indices calculated by the ratio between the mentioned parameters in the long term aged state and the unaged state of the binder. These ageing indices can also be estimated by the SARA fractions, namely the SARA fractions of the unaged state of the bitumen. Due to these results the contents and molecular weights of the SARA fractions permit a description and prediction of the physical, rheological and ageing related properties of the bitumen. Thereby, the results of this research indicate that the influence of the SARA fractions on the behaviour of bitumen decreases with decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Asphalt Pavement Association (NAPA), European Asphalt Pavement Association (EAPA) (2011) The Asphalt Paving Industry—a global perspective, 2nd edn. Homepage EAPA. http://www.eapa.org/userfiles/2/Publications/GL101-2nd-Edition.pdf. Accessed 18 Aug 2016

  2. Hunter RN, Self A, Read J (2015) The shell bitumen handbook. Shell International Petroleum Company Ltd, London

    Google Scholar 

  3. Neumann HJ, Braun E, Dempwolff KR (1981) Bitumen und seine Anwendung. Expert verlag, Grafenau

    Google Scholar 

  4. Zenke G (1977) Zur Langzeit-Veränderung von Bindemitteln in Asphalt-Tragschichten. Bitumen 6:175–184

    Google Scholar 

  5. Stangl K (2010) Linking chemical and physical characteristics with mechanical performance of bitumen. Dissertation, TU Wien

  6. Lu X, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Constr Build Mater 16:1–22. doi:10.1016/S0950-0618(01)00033-2

    Article  Google Scholar 

  7. Pauli AT, Huang SC (2013) Relationship between asphalt compatibility, flow properties, and oxidative ageing. Int J Pavement Res Technol 6(1):1–7

    Google Scholar 

  8. Radenberg M, Nytus N, Gehrke M (2014) Chemische und physikalische Eigenschaften der in Deutschland verwendeten Straßenbaubitumen. Straße und Autobahn 11:851–860

    Google Scholar 

  9. Branthaver JF, Petersen JC, Robertson RE, Duvall JJ, Kim SS, Harnsberger PM, Mill T, Ensley EK, Barbour FA, Schabron JF (1993) SHRP-A-368 Binder characterization and evaluation: vol. 2—chemistry. National Research Council, Washington, DC

    Google Scholar 

  10. Petersen JC, Robertson RE, Branthaver JF, Anderson DA, Christianson DW (1994) SHRP-A-367 binder characterization and evaluation: vol. 1. National Research Council, Washington, DC

    Google Scholar 

  11. Eberhardsteiner L, Fuessl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2015) Towards a microstructural model of bitumen aging behavior. Int J Pavement Eng 16(10):939–949. doi:10.1080/10298436.2014.993192

    Article  Google Scholar 

  12. Eberhardsteiner L, Fuessl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2015) Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling. Mater Struct 48:3099–3112. doi:10.1617/s11527-014-0383-7

    Article  Google Scholar 

  13. Hofko B, Eberhardsteiner L, Fuessl J, Grothe H, Handle F, Hospodka M, Grossegger D, Nahar SN, Schmets AJM, Scarpas A (2016) Impact of maltene and asphaltene fraction on behaviour and microstructure of bitumen. Mater Struct 49:829–841. doi:10.1617/s11527-015-0541-6

    Article  Google Scholar 

  14. Redelius PG (2006) The structure of asphaltenes in bitumen. Road Mater Pavement Des EATA 206:143–162. doi:10.1080/14680629.2006.9690062

    Article  Google Scholar 

  15. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82. doi:10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  16. Miller JT, Fisher RB, Thiyagarajan P et al (1998) Subfractionation and characterization of mayan asphaltene. Energy Fuels 12:1290–1298. doi:10.1021/ef9800664

    Article  Google Scholar 

  17. Boduszynski MM (1981) Asphaltenes in petroleum asphalts: composition and formation. In: Bunger JW, Li NC (eds) Chemistry of asphaltenes. American Chemical Society, Washington, DC, pp 119–136

    Google Scholar 

  18. Tanaka R, Sato S, Takanohashi T et al (2004) Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry. Energy Fuels 18:1405–1413. doi:10.1021/ef034083r

    Article  Google Scholar 

  19. Groenzin H, Mullins OC (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuels 14:677–684. doi:10.1021/ef990225z

    Article  Google Scholar 

  20. Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem 41(4):576–579. doi:10.1021/ac60273a004

    Article  Google Scholar 

  21. Thimm L (2009) FT-IR und FT-NIR spektroskopische Untersuchungen in Kombination mit chemometrischen Auswertealgorithmen zur Charakterisierung der chemischen Zusammensetzung von Straßenbaubitumen. Dissertation, Universität Duisburg-Essen

  22. Šebor G, Blažek J, Nemer MF (1999) Optimization of the preparative separation of petroleum maltenes by liquid adsorption chromatography. J Chromatogr A 847:323–330. doi:10.1016/S0021-9673(99)00329-5

    Article  Google Scholar 

  23. EN 12591 (2009) Bitumen and bituminous binders—specifications for paving grade bitumens

  24. DIN 51595 (2000) Testing of petroleum products—determination of the content of asphaltenes—Precipitation with heptane

  25. EN 1427 (2007): Bitumen and bituminous binders—determination of the softening point—Ring and Ball method

  26. EN 1426 (2007) Bitumen and bituminous binders—determination of needle penetration

  27. EN 14770 (2012) Bitumen and bituminous binders—determination of complex shear modulus and phase angle using a dynamic shear rheometer (DSR)

  28. TL Bitumen-StB (2007) Technische Lieferbedingungen für Straßenbaubitumen und gebrauchsfertige Polymermodifizierte Bitumen (Forschungsgesellschaft für Straßen- und Verkehrswesen FGSV—Arbeitsgruppe Asphaltbauweisen)

  29. EN 14771 (2012) Bitumen and bituminous binders—determination of the flexural creep stiffness—bending beam rheometer (BBR)

  30. EN 12607-3 (2007) Bitumen and bituminous binders—determination of the resistance to hardening under the influence of heat and air—Part 3: RFT method

  31. EN 14769 (2012) Bitumen and bituminous binders—accelerated long-term ageing conditioning by a pressure ageing vessel (PAV)

  32. EN 12601-1 (2007) Bitumen and bituminous binders—determination of the resistance to hardening under the influence of heat and air—Part 1: RTFOT method

  33. Hoeppel HE, Kruppa SB, Pfau P (1991) Vergleich des rolling thin film oven tests mit der thermischen Beanspruchung im rotierenden Kolben nach DIN 52016. Bitumen 1991:39–41

    Google Scholar 

  34. Kessler W (2007) Multivariate datenanalyse. Wiley-VCH, Wien

    Google Scholar 

  35. Backhaus K, Erichson B, Weiber R (2011) Multivariate analysemethoden. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Fahrmeir L, Künstler R, Pigeot I, Tutz G (2007) Statistik—Der Weg zur Datenanalyse. Springer, Berlin

    Google Scholar 

  37. Mezger T (2010) Das Rheologie Handbuch, 3rd edn. Vincentz Network, Hannover

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Bundesanstalt für Straßenwesen (Federal Highway Research Institute), especially Dr Volker Hirsch, for the support and the expert advice. Furthermore, the authors would like to thank the employees of the ASPHALTA Prüf- und Forschungslaboratorium GmbH Berlin who carried out the conventional and rheological test methods as well as the ageing simulations and the employees of the field Chemistry of Mesoscopic Systems of the University of Kassel who carried out the asphaltene separation, the column chromatography and the SEC. This report is based on parts of the research project carried out at the request of the Federal Ministry of Transport and Digital Infrastructure, represented by the Federal Highway Research Institute, under research project No. 7.0249/2011/BRB. The authors are solely responsible for the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Weigel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weigel, S., Stephan, D. Modelling of rheological and ageing properties of bitumen based on its chemical structure. Mater Struct 50, 83 (2017). https://doi.org/10.1617/s11527-016-0957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0957-7

Keywords

Navigation