Andersson K, Allard B, Bengtsson M, Magnusson B (1989) Chemical composition of cement pore solutions. Cem Concr Res 19(3):327–332
Article
Google Scholar
Bach TTH, Cau-dit-Coumes C, Pochard I, Mercier C, Revel B, Nonat A (2012) Influence of temperature on the hydration products of low pH cements. Cem Concr Res 42(6):805–817. doi:10.1016/j.cemconres.2012.03.009
Article
Google Scholar
Berry EE, Hemmings RT, Langley WS, Carette GG (1989) Beneficiated fly ash: hydration, microstructure, and strength development in Portland cement systems. In: Malhotra VM (ed) Fly ash, silica fume, slag, and natural pozzolans in concrete, ACI SP-114. American Concrete Institute, Detroit, pp 241–273
Google Scholar
Bérubé MA, Tremblay C, Fournier B, Thomas MD, Stokes DB (2004) Influence of lithium-based products proposed for counteracting ASR on the chemistry of pore solution and cement hydrates. Cem Concr Res 34(9):1645–1660
Article
Google Scholar
Brameshuber W, Vollpracht A (2007) Strukturuntersuchungen an 10 Jahre alten Zementsteinproben. Report No. F 928. Institute of Building Materials Research, RWTH Aachen University (unpublished)
Brendle S, de Rooij MR, van Breugel K (2008) Pore solution evolution during the early Portland cement hydration. Restor Build Monum 14(2):141–152
Google Scholar
Chappex T (2012) The role of aluminium from supplementary cementitious materials in controlling alkali-silica reaction. Dissertation, École polytechnique fédérale de Lausanne
Codina M, Cau-dit-Coumes C, Le Bescop P, Verdier J, Ollivier JP (2008) Design and characterization of low heat and low-alkalinity cements. Cem Concr Res 38(4):437–448. doi:10.1016/j.cemconres.2007.12.002
Article
Google Scholar
Diamond S (1981) Effects of two Danish fly ashes on alkali contents of pore solutions of cement–fly ash pastes. Cem Concr Res 11(3):383–394
MathSciNet
Article
Google Scholar
Deschner F, Lothenbach B, Winnefeld F (2013) Effect of temperature on the hydration Portland cement blended with siliceous fly ash. Cem Concr Res 52:169–181. doi:10.1016/j.cemconres.2013.07.006
Article
Google Scholar
Fraay ALA (1990) Fly ash a pozzolan in concrete. Dissertation, Technical University, Delft
Fujii K, Kondo W, Watanabe T (1970) Über die Hydratation von Portlandzement sofort nach dem Anmachen. Zement Kalk Gips 23(2):72–79
Google Scholar
Garcia Calvo JL, Hidalgo A, Alonso C, Fernandez Luco L (2010) Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem Concr Res 40(8):1290–1297. doi:10.1016/j.cemconres.2009.11.008
Article
Google Scholar
Gartner EM, Tang FJ, Weiss SJ (1985) Saturation factors for calcium hydroxide and calcium sulfates in fresh Portland cement pastes. J Am Ceram Soc 68(12):667–673. doi:10.1111/j.1151-2916.1985.tb10122.x
Article
Google Scholar
Hüttl R (2000) Der Wirkungsmechanismus von Steinkohlenflugasche als Betonzusatzstoff. Dissertation, Technical University, Berlin
Larbi JA, Fraay ALA, Bijen JMJM (1990) The chemistry of the pore fluid of silica fume-blended cement systems. Cem Concr Res 20(4):506–516
Article
Google Scholar
Le Saoût G, Lothenbach B, Hori A, Higuchi T, Winnefeld F (2013) Hydration of Portland cement with additions of calcium sulfoaluminates. Cem Concr Res 43:81–94. doi:10.1016/j.cemconres.2012.10.011
Article
Google Scholar
Longuet P, Burglen L, Zelwer A (1973) La phase liquide du ciment hydrate. Rev matér constr 676:35–41
Google Scholar
Lorenzo P, Goñi S, Hernandez S, Guerrero A (1996) Effect of fly ashes with high alkali content on the alkalinity of the pore solution of hydrated Portland cement paste. J Am Ceram Soc 79(2):470–474. doi:10.1111/j.1151-2916.1996.tb08146.x
Article
Google Scholar
Lothenbach B, Wieland E (2006) A thermodynamic approach to the hydration of sulphate-resisting Portland cement. Waste Manag 26(7):706–719. doi:10.1016/j.wasman.2006.01.023
Article
Google Scholar
Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226. doi:10.1016/j.cemconres.2005.03.001
Article
Google Scholar
Lothenbach B, Winnefeld F, Alder C, Wieland E, Lunk P (2007) Effects of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem Concr Res 37(4):483–491. doi:10.1016/j.cemconres.2006.11.016
Article
Google Scholar
Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860. doi:10.1016/j.cemconres.2008.01.002
Article
Google Scholar
Lothenbach B, Le Saoût G, Ben Haha M, Figi R, Wieland E (2012) Hydration of a low-alkali CEM III/B-SiO2 cement (LAC). Cem Concr Res 42(2):410–423. doi:10.1016/j.cemconres.2011.11.008
Article
Google Scholar
Lothenbach B, Rentsch D, Wieland E (2014) Hydration of a silica fume blended low-alkali shotcrete cement. J Phys Chem Earth 70–71:3–16. doi:10.1016/j.pce.2013.09.007
Article
Google Scholar
Luke K, Glasser FP (1986) Chemical changes occurring during the early hydration of PFA-OPC mixtures. MRS Proc 65:173–180. doi:10.1557/PROC-65-173
Article
Google Scholar
Nixon PJ, Page CL, Bollinghaus R, Canham I (1986) The effect of a PFA with a high total alkali content on pore solution composition and alkali silica reaction. Mag Concr Res 38(134):30–35
Article
Google Scholar
Page CL, Vennesland O (1982) Pore solution composition and chloride binding capacity of silica fume–cement pastes. Report Number STF65 A82025. Norwegian Institute of Technology, Cement and Concrete Research Institute, FCB, Trondheim
Ramlochan T, Zacarias P, Thomas MDA, Hooton RD (2004) The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature. Part II: microstructural and microchemical investigations. Cem Concr Res 34(8):1341–1356
Article
Google Scholar
Rothstein D, Thomas JJ, Christensen BJ, Jennings HM (2002) Solubility behaviour of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem Concr Res 32(10):1663–1671. doi:10.1016/S0008-8846(02)00855-4
Article
Google Scholar
Schäfer E (2005) Einfluss der Reaktionen verschiedener Zementhauptbestandteile auf den Alkalihaushalt der Porenlösung des Zementsteins. Schriftenreihe der Zementindustrie (69). Dissertation, Technical University, Clausthal
Schießl P, Härdtl R, Moersch J (1995) Untersuchungen zur Verwendung von Steinkohlenflugasche in Spannbeton mit sofortigem Verbund. Report No. F 430. Institute of Building Materials Research, RWTH Aachen University
Schießl P, Meng B (1996) Grenzen der Anwendbarkeit von Puzzolanen im Beton. Report No. F 405. Institute of Building Materials Research, RWTH Aachen University
Schießl P, Moersch J, Schröder P (1997) Verwendung von Hochofenzement (CEM III) in Spannbeton mit sofortigem Verbund. Report No. F 566. Institute of Building Materials Research, RWTH Aachen University
Silsbee M, Malek RIA, Roy DM (1986) Composition of pore fluids extruded from slag–cement pastes. In: International congress on the chemistry of cement, Rio de Janeiro, pp 263–269
Stassinopoulos EN (1982) Untersuchung über die Zusammensetzung der flüssigen Phase und die Migrations-Prozesse in Zementpasten und Mörteln. Dissertation, Technical University, Clausthal
Thomas JJ, Rothstein D, Jennings HM, Christensen BJ (2003) Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes. Cem Concr Res 33(12):2037–2047. doi:10.1016/S0008-8846(03)00224-2
Article
Google Scholar
Vollpracht A (2012) Einbindung von Schwermetallen in Portlandzementstein. Schriftenreihe Aachener Beiträge zur Bauforschung (18). Dissertation, RWTH Aachen University. ISBN 3-86130-635-2
de Weerdt K, Ben Haha M, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41(3):279–291. doi:10.1016/j.cemconres.2010.11.014
Article
Google Scholar
Duchesne J (2013) Alkali concentrations in pore solutions of pastes made of Portland cement with and without supplementary cementitious materials. Département de géologie et de génie géologique, Université Laval, Québec (unpublished)
Lothenbach B (2013) Pore solution of cement pastes with high amounts of silica fume at different temperatures. Empa Material Science and Technology (unpublished)
Vollpracht A (2013) Pore solution of cement pastes with Portland cement with and without fly ash and blast furnace slag cement. Institute of Building Materials Research, RWTH Aachen University (unpublished)
Boddy AM, Hooton RD, Thomas MDA (2003) The effect of the silica content of silica fume on its ability to control alkali-silica reaction. Cem Concr Res 33(8):1263–1268
Article
Google Scholar
van Eijk RJ, Brouwers HJH (2000) Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model. Cem Concr Res 30(11):1801–1806
Article
Google Scholar
Canham I, Page CL, Nixon PJ (1987) Aspects of the pore solution chemistry of blended cements related to the control of alkali silica reaction. Cem Concr Res 17(5):839–844
Article
Google Scholar
Kawamura M, Takemoto K (1986) Effects of pozzolans and a blast furnace slag on alkali hydroxides concentrations in pore solutions and alkali-silica expansion. In: Review of the 40th general meeting, technical session, 1986. Cement Association of Japan, Tokyo, pp 262–265
Hooton RD, Thomas MDA, Ramlochan T (2010) Use of pore solution analysis in design for concrete durability. Adv Cem Res 22(4):203–210. doi:10.1680/adcr.2010.22.4.20
Article
Google Scholar
Goldschmidt A (1982) About the hydration theory and the composition of the liquid phase of Portland cement. Cem Concr Res 12(6):743–746
Article
Google Scholar
Michaux M, Fletcher P, Vidick B (1989) Evolution at early hydration times of the chemical composition of liquid phase of oil-well cement pastes with and without additives. Part I. Additive free cement pastes. Cem Concr Res 19(3):443–456
Article
Google Scholar
Locher FW, Richartz W, Sprung S (1976) Erstarren von Zement I: Reaktion und Gefügeentwicklung. Zement Kalk Gips 29(10):435–442
Google Scholar
Locher FW, Richartz W, Sprung S, Rechenberg W (1983) Erstarren von Zement IV: Einfluss der Lösungszusammensetzung. Zement Kalk Gips 36(4):224–231
Google Scholar
Vernet C, Démoulian E, Gourdin P, Hawthorn F (1980) Hydration kinetics of Portland cement. In: 7th International congress on the chemistry of cement, Paris, pp 219–224
Vernet C, Démoulian E, Gourdin P, Hawthorn F (1980) Kinetics of slag cements hydration. In: 7th International congress on the chemistry of cement, Paris, pp 128–133
Way SJ, Shayan A (1989) Early hydration of a Portland cement in water and sodium hydroxide solutions: composition of solutions and nature of solid phases. Cem Concr Res 19(5):759–769
Article
Google Scholar
Chatterji S (1991) On the relevance of expressed liquid analysis to the chemical processes occurring in cement paste. Cem Concr Res 21(2–3):269–272
Article
Google Scholar
Lothenbach B (2010) Thermodynamic equilibrium calculations in cementitious systems. Mater Struct 43(10):1413–1433. doi:10.1617/s11527-010-9592-x
Article
Google Scholar
Duchesne J, Bérubé MA (1994) The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: another look at the reaction mechanisms. Part 2: pore solution chemistry. Cem Concr Res 24(2):221–230
Article
Google Scholar
Duchesne J, Bérubé MA (1994) Evaluation of the validity of the pore solution expression method from hardened cement pastes and mortars. Cem Concr Res 24(3):456–462
Article
Google Scholar
Tritthart J (1989) Chloride binding in cement—I. Investigations to determine the composition of pore water in hardened cement. Cem Concr Res 19(4):586–594
Article
Google Scholar
Bérubé MA, Tremblay C (2004) Chemistry of pore solution expressed under high pressure—influence of various parameters and comparison with the hot-water extraction method. In: 12th International conference on alkali-aggregate reaction in concrete, Beijing, pp 833–842
Leemann A, Loertscher L, Bernard L, Le Saout G, Lothenbach B, Espinosa-Marzal R (2014) Mitigation of ASR by the use of LiNO3—characterization of the reaction products. Cem Concr Res 59:73–86. doi:10.1016/j.cemconres.2014.02.003
Article
Google Scholar
Wagner T, Kulik DA, Hingerl FF, Dmytrieva SV (2012) GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can Miner 50:1173–1195. doi:10.3749/canmin.50.5.1173
Article
Google Scholar
Kulik D, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl F, Chudnenko KV, Berner U (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geochem 17(1):1–24. doi:10.1007/s10596-012-9310-6
Google Scholar
Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Radiochim Acta 90(9–11):805–813. doi:10.1524/ract.2002.90.9-11_2002.805
Google Scholar
Thoenen T (2012) The PSI/Nagra chemical thermodynamic database 12/07: compilation of updated and new data with respect to the Nagra/PSI chemical thermodynamic data base 01/01. PSI Internal Report, TM-44-12-06. Paul Scherrer Institut, Villigen
Matschei T, Skapa R, Lothenbach B, Glasser FP (2007) The distribution of sulfate in hydrated Portland cement paste. In: 12th International congress on the chemistry of cement, Montreal, Canada
Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38(1):1–18. doi:10.1016/j.cemconres.2007.08.017
Article
Google Scholar
Dilnesa BZ, Lothenbach B, Renaudin G, Wichser A, Kulik D (2014) Synthesis and characterization of hydrogarnet Ca3(AlxFe1 − x)2(SiO4)y(OH)4(3 − y). Cem Concr Res 59:96–111. doi:10.1016/j.cemconres.2014.02.001
Article
Google Scholar
Kulik DA (2011) Improving the structural consistency of C–S–H solid solution thermodynamic models. Cem Concr Res 41(5):477–495. doi:10.1016/j.cemconres.2011.01.012
MathSciNet
Article
Google Scholar
Schmidt T, Lothenbach B, Romer M, Scrivener KL, Rentsch D, Figi R (2008) A thermodynamic and experimental study of the conditions of thaumasite formation. Cem Concr Res 38(3):337–349. doi:10.1016/j.cemconres.2007.11.003
Article
Google Scholar
Kulik D, Tits J, Wieland E (2007) Aqueous–solid solution model of strontium uptake in C–S–H phases. Geochim Cosmochim Acta 71(12, Supplement 1):A530
Google Scholar
Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(3):217–229. doi:10.1016/j.cemconres.2010.12.001
Article
Google Scholar
Baert G (2009) Physico-chemical interactions in Portland cement-(high volume) fly ash binders. Dissertation, Ghent University
Vollpracht A, Brameshuber W (2010) Investigations on ten years old hardened cement paste samples. In: Proceedings of the international RILEM conference on materials science (MatSci), Vol. III: additions improving properties of concrete (AdIPoC). RILEM, Bagneux, pp 79–91
Poulsen SL, Jakobsen HJ, Skibsted J (2009) Methodologies for measuring the degree of reaction in Portland cement blends with supplementary cementitious materials by 27Al and 29Si MAS NMR spectroscopy. In: 17 Internationale Baustofftagung (ibausil), Weimar, Germany
Skibsted J, Jensen OM, Jakobsen HJ (1997) Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy. In: Justness H (ed) 10th international congress on the chemistry of cement, Göteborg, p 2ii056
Pietersen HS, Kentgens APM, Nachtegaal GH, Veeman WS, Bijen JM (1992) The reaction mechanism of blended cements: a 29Si NMR study. In: Malhotra VM (ed) 4th international conference on fly ash, silica fume, slag and natural pozzolans in concrete. CANET/ACI SP 132-47, Istanbul, Turkey, pp 795–812
Hong S-Y, Glasser FP (1999) Alkali binding in cement pastes. Part I. The C–S–H phase. Cem Concr Res 29(12):1893–1903. doi:10.1016/S0008-8846(99)00187-8
Article
Google Scholar
Moragues A, Macias A, Andrade C (1987) Equilibria of the chemical composition of the concrete pore solution. Part 1: comparative study of synthetic and extracted solutions. Cem Concr Res 17(2):173–182
Article
Google Scholar
Diamond S, Ong S (1994) Effects of added alkali hydroxides in mix water on long-term SO4
2− concentrations in pore solution. Cem Concr Compos 16(3):219–226
Article
Google Scholar
Goñi S, Lorenzo MP, Guerrero A, Hernández MS (1996) Calcium hydroxide saturation factors in the pore solution of hydrated Portland cement fly ash pastes. J Am Ceram Soc 79(4):1041–1046. doi:10.1111/j.1151-2916.1996.tb08545.x
Article
Google Scholar
Stark J, Möser B, Bellmann F (2007) Quantitative characterization of cement hydration. In: 5th International Essen workshop, transport in concrete: nano- to macrostructure, Essen, Germany. Aedification Publishers, Freiburg
Stade H (1989) On the reaction of C–S–H(di, poly) with alkali hydroxides. Cem Concr Res 19(5):802–810
Article
Google Scholar
van der Sloot HA, Hoede D, Rietra RPJJ et al (2001) Environmental criteria for cement based products: ECRICEM. Phase I: ordinary Portland cements. Report No. ECN-C-01-069. Energy Research Centre of the Netherlands, Petten
Buhrke V, Jenkins R, Smith D (1998) A practical guide for the preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. Wiley-VCH, New York
Google Scholar
Faucon P, Delagrave A, Petit JC, Richet C, Marchand J, Zanni H (1999) Aluminium incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. J Phys Chem B 103:7796–7802. doi:10.1021/jp990609q
Article
Google Scholar
Matschei T, Lothenbach B, Glasser FP (2007) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem Concr Res 37(10):1379–1410. doi:10.1016/j.cemconres.2007.06.002
Article
Google Scholar