Skip to main content
Log in

Development of kenaf fibre reinforced polymer laminate for shear strengthening of reinforced concrete beam

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Fabrication of green fibre composite laminate for strengthening of reinforced concrete structure is one of the current interests in the field of construction industry. The aim of this research was to develop kenaf fibre reinforced polymer (KFRP) laminate for shear strengthening of reinforced concrete beam. Comprehensive design and theoretical models were also proposed for KFRP laminate shear strengthened beam. In the experimental programme, KFRP laminate had been fabricated with various fibre content to obtain optimal mix ratio. Physical and mechanical properties of KFRP laminates were experimentally investigated. Three reinforced concrete beam specimens were prepared for structural investigations. Results showed that KFRP laminate with maximum fibre content had the highest tensile strength and the laminate was found to be elastic isotropic in nature. The KFRP laminate strengthened beam had 100 % higher shear crack load and 33 % ultimate failure load as compared to un-strengthened control beam. It reduced the numbers and width of cracks and had shown strain compatibility behavior with shear reinforcement. The failure load, ductility, crack patterns and strain characteristics of KFRP laminate strengthened beam were found to be closely comparable with CFRP laminate strengthened beam. The experimental results satisfactorily verified the proposed design and theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

ε fe :

Effective strain of CFRP laminate

ε fu :

Fracture strain of CFRP laminate

ε kfrp, debonding :

Debonding strain of KFRP laminate

d :

Effective depth of beam

d′ :

Depth of compression reinforcement (top bar)

w kfrp :

Width of KFRP shear strip

F bu :

Bond strength of concrete

t kfrp :

Thickness of KFRP laminate

A kfrp :

Cross sectional area of KFRP laminate

E kfrp :

Modulus of elasticity of KFRP laminate

ε kfrp, design :

Design strain of KFRP laminate

ε y, link :

Yield strain of shear reinforcement

f y, link :

Yield strength of shear reinforcement

E s :

Modulus of elasticity of steel bar

M :

Moment resisting capacity of beam

T :

Tensile force of flexural reinforcement

Z :

Moment arm

A s :

Cross sectional area of flexural reinforcement

f tk :

Tensile strength of flexural reinforcement

f ck :

Concrete compressive strength based on cylinder test

b :

Width of beam

x :

Depth of neutral axix

V d :

Design shear force

L s :

Shear span

N :

Number of shear link that resist shear

θ:

Inclination of shear crack

s :

Spacing of shear link

V y, link :

Shear force of beam due to yielding of shear reinforcement

A s, link :

Cross sectiona area of shear link

V kfrp :

Shear force resisted by KFRP laminate

N kfrp :

Number of KFRP laminate to resist shear (from one side of beam)

s kfrp :

Spacing of KFRP laminate

V CB :

Shear capacity of control beam

V SB :

Shear capacity of KFRP laminate strengthened beam

f t, link :

Tensile strength of shear reinforcement

V SB, KFRP :

Shear capacity of KFRP laminate strengthened beam

V SB, CFRP :

Shear capacity of CFRP laminate strengthened beam

Ε cfrp, debonding :

Debonding strain of CFRP laminate

References

  1. ACI Committee 440 (2002) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440 (2R-02)

  2. Ahmed KS, Vijayarangan S (2008) Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J Mater Process Technol 207:330–335. doi:10.1016/j.jmatprotec.2008.06.038

    Article  Google Scholar 

  3. Alam MA, Jumaat MZ (2013) Design guideline of shear strengthened reinforced concrete beam using CFRP laminate. J Engineering Structures, Under Review, ID: ENGSTRUCT-S-13-01242

  4. Alsayed SH, Siddiqui NA (2013) Reliability of shear-deficient RC beams strengthened with CFRP-strips. J Constr Build Mater 42:238–247. doi:10.1016/j.conbuildmat.2013.01.024

    Article  Google Scholar 

  5. Bae SW, Murphy M, Mirmiran A, Belarbi A (2013) Behavior of RC T-beams strengthened in shear with CFRP under cyclic loading. J Bridge Eng 18(2):99–109. doi:10.1061/(ASCE)BE.1943-5592.0000332

    Article  Google Scholar 

  6. Barros JAO, Dias SJE (2006) Near surface mounted CFRP laminates for shear strengthening of concrete beams. Cem Concr Compos 28:276–292. doi:10.1016/j.cemconcomp.2005.11.003

    Article  Google Scholar 

  7. Belarbi A, Acun B (2013) FRP systems in shear strengthening of reinforced concrete structures. J. Procedia Eng 57:2–8. doi:10.1016/j.proeng.2013.04.004

    Article  Google Scholar 

  8. Bernard M, Khalina A, Ali A (2011) The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Mater Des 32:1039–1043. doi:10.1016/j.matdes.2010.07.014

    Article  Google Scholar 

  9. Bianco V, Monti G, Barros J (2014) Design formula to evaluate the NSM FRP strips shear strength contribution to a RC beam. Compos B Eng 56:960–971. doi:10.1016/j.compositesb.2013.09.001

    Article  Google Scholar 

  10. Bilotta A, Ceroni F, Di Ludovico M, Nigro E, Pecce M, Manfredi G (2011) Bond efficiency of EBR and NSM FRP systems for strengthening concrete members. J Compos Constr 15(5):757–772. doi:10.1061/(ASCE)CC.1943-5614.0000204

    Article  Google Scholar 

  11. Costa IG, Barros JAO (2010) Flexural and shear strengthening of RC beams with composite materials—the influence of cutting steel stirrups to install CFRP strips. Cem Concr Compos 32:544–553. doi:10.1016/j.cemconcomp.2010.03.003

    Article  Google Scholar 

  12. Dias SJE, Barros JAO (2011) Shear strengthening of RC T-section beams with low strength concrete using NSM CFRP laminates. Cem Concr Compos 33:334–345. doi:10.1016/j.cemconcomp.2010.10.002

    Article  Google Scholar 

  13. Doan TTL, Gao SL, Mader E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66:952–963. doi:10.1016/j.compscitech.2005.08.009

    Article  Google Scholar 

  14. Dong J, Wang Q, Guan Z (2013) Structural behaviour of RC beams with external flexural and flexural–shear strengthening by FRP sheets. J Compos 44:604–612. doi:10.1016/j.compositesb.2012.02.018

    Article  Google Scholar 

  15. EC2 (2004) General rules and rules for building Eurocode 2: design of concrete structures Part 1-1 1992-1-1

  16. Elsaid A, Dawood M, Seracino R, Bobko C (2011) Mechanical properties of kenaf fiber reinforced concrete. Constr Build Mater 25:1991–2001. doi:10.1016/j.conbuildmat.2010.11.052

    Article  Google Scholar 

  17. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59:1303–1309 (PII: S0266-3538(98)00169-9)

    Article  Google Scholar 

  18. Ghani MAA, Salleh Z, Hyie KM (2012) Mechanical properties of kenaf/fiberglass polyester hybrid composite. Procedia Eng 41:1654–1659. doi:10.1016/j.proeng.2012.07.364

    Article  Google Scholar 

  19. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432. doi:10.1016/j.compscitech.2007.06.022

    Article  Google Scholar 

  20. Hu RH, Sun M, Lim JK (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31:3167–3173. doi:10.1016/j.matdes.2010.02.030

    Article  Google Scholar 

  21. Jumaat MZ, Alam MA (2009) Effects of intermediate anchors on end anchored CFRP laminate flexurally strengthened reinforced concrete beams. J Appl Sci 9(1):142–148. doi:10.3923/jas.2009.142.148

    Article  Google Scholar 

  22. Kabir MA, Huque MM, Islam MR, Bledzki AK (2010) Mechanical properties of jute fibre reinforced polypropylene composite: effect of chemical treatment by benzenediazonium salt in alkaline medium. Bio Resour 5(3):1618–1625

    Google Scholar 

  23. Koutas L, Triantafillou TC (2013) Use of anchors in shear strengthening of reinforced concrete T-beams with FRP. J Compos Constr 17(1):101–107. doi:10.1061/(ASCE)CC.1943-5614.0000316

    Article  Google Scholar 

  24. Rassmann S, Paskaramoorthy R, Reid RG (2011) Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates. Mater Des 32:1399–1406. doi:10.1016/j.matdes.2010.09.006

    Article  Google Scholar 

  25. Rassmann S, Reid RG, Paskaramoorthy R (2010) Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos Part A Appl Sci Manuf 41:1612–1619. doi:10.1016/j.compositesa.2010.07.009

    Article  Google Scholar 

  26. Shibata S, Cao Y, Fukumoto I (2006) Lightweight laminate composites made from kenaf and polypropylene fibres. Polym Test 25:142–148. doi:10.1016/j.polymertesting.2005.11.007

    Article  Google Scholar 

Download references

Acknowledgments

The work of this research had been conducted at the Department of Civil Engineering, Universiti Tenaga Nasional, authors would like to express their thanks to the Department for the technical and laboratory supports. Thanks are also due to the research management centre (RMC) of Universiti Tenaga Nasional for providing the fund under the research grant of J510050373. Special thanks to my final year project students and who contributed directly or indirectly to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ashraful Alam.

Appendix

Appendix

A 150 mm × 300 mm × 2,300 mm full scale reinforced concrete beam was fabricated with 2–16 mm flexural reinforcement and 6 mm shear reinforcement of 110 mm spacing. The beam was supported using roller with the span of two meters. It was tested for two point load with the shear span of 650 mm. The properties of materials are shown in Table 7. The beams need to be strengthened for shear using KFRP laminate for it’s maximum capacities.

1.1 Effective strain of CFRP laminate based on ACI 440.2R-02

Active bond length,

$$L_{\text{e}} = \frac{23,300}{{\left( {n t_{\text{frp }} E_{\text{frp}} } \right)^{0.58} }} = \frac{23,300}{{\left( {1 \times 1.2 \times 165 \times 10^{3} } \right)^{0.58} }} = 19.74 {\text{mm}},$$
$$k_{1} = \left( {\frac{{ f_{\text{c}}^{'} }}{27} } \right)^{2/3} = \left( {\frac{ 22.4}{27} } \right)^{2/3} = 0.88 ,$$
$${\text{k}}_{2} = \left( {\frac{{d_{\text{f}} - 2L_{\text{e}} }}{{d_{\text{f}} }}} \right) = \left( {\frac{261 - 2 \times 19.74 }{261}} \right) = 0.85,\quad {\text{for two sides laminate,}}$$
$$k_{v} = \left( {\frac{{ k_{1} k_{2} L_{\text{e}} }}{{11,900\varepsilon_{\text{fu}} }}} \right) = \left( {\frac{0.88 \times 0.85 \times 19.74}{11,900 \times 0.01}} \right) = 0.104,$$

The effective strain ε fe in FRP is assumed to be smaller than the ultimate strain ε fu = 0.012

This can be computed putting value of k v and ε fu.

Effective strain of CFRP laminate,

$$\varepsilon_{fe} = k_{v} \varepsilon_{fu} = 0.104 \times 0.012 = 0.0013 < 0.004$$

1.2 Debonding strain of CFRP laminate based on proposed model of Alam et al. (2014)

The debonding strain of CFRP laminate for beams without connectors could be predicted based on the proposed model of Alam et al. (2014),

$$\varepsilon_{\text{frp, debonding}} = \frac{{F_{\text{bu}} \left( {d - d^{'} } \right)}}{{t_{\text{frp}} E_{\text{frp}} }} = \frac{{1.58\left( {261 - 39} \right)}}{{\left( {1.2} \right)\left( {165,000} \right)}} = 0.00177$$

1.3 Flexural capacities of beam

As per Eq. 2, the flexural capacities of beams,

$$\begin{gathered} M = Tz = A_{s} f_{tk} = \left( {402} \right)\left( {654} \right)\left[ {261 - \frac{{0.588\left( {402} \right)\left( {654} \right)}}{{\left( {25.6} \right)\left( {150} \right)}}} \right] \hfill \\ \;\;\; = 58.02 \, {\rm kN - m} , \hfill \\ \end{gathered}$$

Total failure load,

$$P = 2V_{\text{d}} = \frac{2M}{{L_{\text{s}} }} = \frac{2(58.02)}{0.65} = 178.5 {\text\,{kN}} .$$

Design shear force

$$V_{d} = \frac{178.5}{2} = 89.25 {\text\,{kN}} .$$

1.4 Design strain of KFRP laminate

Yield strain of shear reinforcement,

$$\varepsilon_{\text{y, link}} = \frac{{f_{\text{y, link}} }}{{E_{\text{s}} }} = \frac{520}{200,000} = 0.0026.$$

Debonding strain of KFRP laminate,

$$\varepsilon_{\text{kfrp, debonding}} = \frac{{F_{\text{bu}} \left( {d - d^{'} } \right)}}{{t_{\text{kfrp}} E_{\text{kfrp}} }} = \frac{{1.58\left( {261 - 39} \right)}}{{\left( 6 \right)\left( {11400} \right)}} = 0.00512 > \varepsilon_{\text{y, link}} .$$

Thus, the design strain of KFRP laminate is,

$$\varepsilon_{\text{kfrp(design) = }} \varepsilon_{\text{y, link}} = 0.0026.$$

1.5 Required cross sectional area of KFRP laminate for shear strengthening of RC beam

As per proposed guideline, the cross sectional area of CFRP laminate can be calculated based on Eq. 12. For conservative design, the shear crack inclination of beam could be considered as 45°.

$$\begin{gathered} V_{{{\text{y, link}}\left( { 4 5} \right)}} = A_{\text{s, link}} f_{\text{y, link}} \left[ {\frac{{\left( {d - d^{'} } \right)\cot 45}}{s}} \right] = \left( {47.5} \right)\left( {520} \right)\left[ {\frac{{\left( {261 - 39} \right)\cot 45}}{110}} \right] \hfill \\ = 49840 {\rm{N}} = 49.84 {\text\,{kN}} \hfill \\ A_{\text{kfrp}} = \frac{{E_{s} s_{\text{kfrp}} \left( {V_{d} - V_{\text{link}} } \right)}}{{2E_{\text{kfrp}} f_{\text{y, link}} \left( {d - d^{'} } \right)\cot \theta }} = \frac{{\left( {200000} \right)\left( {110} \right)\left( {89250 - 49840} \right)}}{{2\left( {11000} \right)\left( {520} \right)\left( {261 - 39} \right)\cot 45}} = 341.39 \, {\text{mm}}^{2} \hfill \\ = 6 {\text{mm}} \times 54 {\text{mm }} \approx 6 {\text{mm}} \times 50 {\text{mm}} .\hfill \\ \end{gathered}$$

Thus, the provided KFRP laminate was 6 mm × 50 mm × 300 mm with 110 mm spacing for shear strengthening of beam.

1.6 Theoretical shear capacity of KFRP laminate strengthened beam

$$V_{\text{t, link}} = A_{\text{s, link}} f_{\text{t, link}} \left[ {\frac{{\left( {d - d^{'} } \right)\cot 45}}{\text{s}}} \right] = \left( {47.5} \right)\left( {556} \right)\left[ {\frac{{\left( {261 - 39} \right)\cot 45}}{110}} \right] = 53.3 {\text\,{kN}}$$
$$\begin{gathered} V_{\text{kfrp}} = 2A_{\text{kfrp}} E_{\text{kfrp}} \varepsilon_{\text{kfrp, design}} \left[ {\frac{{\left( {d - d^{'} } \right)\cot 45}}{{s_{\text{kfrp}} }}} \right] \hfill \\ \quad \quad = 2\left( {300} \right)\left( {11400} \right)\left( {0.0026} \right)\left[ {\frac{{\left( {261 - 39} \right)\cot 45}}{110}} \right] = 35.89 {\text\,{kN}} .\hfill \\ \end{gathered}$$

Total shear force of KFRP laminate shear strengthened beam is,

$$V_{\text{SB}} = V_{\text{y, link}} + V_{\text{kfrp}} = 53.3 + 35.89 = 89.2 {\text\,{kN}} .$$

Shear failure load is 178.4 kN

1.7 Theoretical shear capacity of CFRP laminate strengthened beam

$$\begin{gathered} V_{\text{debonding, link}} = A_{\text{s, link}} f_{\text{s}} \left[ {\frac{{\left( {d - d^{'} } \right)\cot 45}}{s}} \right] = \left( {47.5} \right)\left( {200000} \right)(0.00177)\left[ {\frac{{\left( {261 - 39} \right)\cot 45}}{110}} \right] = 33.93 {\text\,{kN}} \hfill \\ V_{\text{cfrp}} = 2A_{\text{cfrp}} E_{\text{cfrp}} \varepsilon_{\text{cfrp, design}} \left[ {\frac{{\left( {d - d^{'} } \right)\cot 45}}{{s_{\text{cfrp}} }}} \right] \hfill \\ = 2\left( {1.2} \right)(50)\left( {165000} \right)\left( {0.00177} \right)\left[ {\frac{{\left( {261 - 39} \right)\cot 45}}{110}} \right] = 70.72 {\text\,{kN}} .\hfill \\ \end{gathered}$$

Total shear force of CFRP laminate shear strengthened beam is,

$$V_{SB,CFRP} = V_{y,link} + V_{kfrp} = 33.93 + 70.72 = 104.6 \, {\rm{kN}}$$

Shear failure load due to debonding of CFRP laminate is 209.2 kN

See appendix Table 7

Table 7 Design parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.A., Hassan, A. & Muda, Z.C. Development of kenaf fibre reinforced polymer laminate for shear strengthening of reinforced concrete beam. Mater Struct 49, 795–811 (2016). https://doi.org/10.1617/s11527-015-0539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0539-0

Keywords

Navigation