Skip to main content
Log in

Uniaxial tension study of calcium silicate hydrate (C–S–H): structure, dynamics and mechanical properties

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Calcium silicate hydrate (C–S–H) gels, the main binding phase of cement paste, determine the mechanical properties of cementitious materials. In order to obtain the cohesive force in C–S–H gel, molecular dynamics was carried out to simulate the uniaxial tension test on C–S–H model along x, y and z direction. Due to the structure and dynamic differences of the layered structure, C–S–H model demonstrates heterogeneous mechanical behavior. The calcium silicate layer, constructed by Ca–O and Si–O ionic-covalent bonds, has stronger cohesive force than that of interlayer H-bond network. In addition, composition influence on mechanical performance has been investigated by variation of the Ca/Si ratio. High calcium content, de-polymerizing the silicate chain structure in C–S–H gel, weakens uniaxial tension strength and elastic modulus in three directions. More water molecules penetration into the defective silicate region further reduces the mechanical properties of C–S–H gel at high Ca/Si ratio. Composition analysis at nano-scale can provide molecular insights on the cementitious materials design with different Ca/Si ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alexander KM (1959) Strength of the cement aggregate bond. ACI J Proc 56:377–390

    Google Scholar 

  2. Alizadeh R, Beaudoin JJ, Raki L (2011) Mechanical properties of calcium silicate hydrates. Mater Struct 44:13–28

    Article  Google Scholar 

  3. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium silicate hydrate in cement. Nat Mater 6:311–316

    Article  Google Scholar 

  4. Beaudoin JJ, Feldman RF, Tumidajski PJ (1994) Pore structure of hardened portland-cement pastes and its influence on properties. Adv Cem Based Mater 1:224–236

    Article  Google Scholar 

  5. Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289:388–390

    Article  Google Scholar 

  6. Bonnacorsi E, Merlino S, Taylor H (2004) the crystal structure of Jennite Ca9Si6O18(OH)6 8H2O. Cem Concr Res 34:1481–1488

    Article  Google Scholar 

  7. Bonnaud PA, Ji Q, Coasne B, Pellenq RJM, Van Vliet KJ (2012) Thermodynamics of water confined in porous calcium–silicate–hydrates. Langmuir 28:11422–11432

    Article  Google Scholar 

  8. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519

    Article  Google Scholar 

  9. Chen XD, Wu SX, Zhou JK (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40:869–874

    Article  Google Scholar 

  10. Chowdhary J, Ladanyi BM (2009) Hydrogen Bond Dynamics at the Water/Hydrocarbon Interface. J Phys Chem B 113:4045–4053

    Article  Google Scholar 

  11. Cong X, Kirkpatrick R (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater 3:144–156

    Article  Google Scholar 

  12. Costantinide G, Ulm F (2006) The nanogranular nature of C-S–H. J Mech Phys Solids 55:64–90

    Article  Google Scholar 

  13. Costantinides G, Ulm F (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: result from nanoindentation and micromechanical modeling. Cem Concr Res 34:67–80

    Article  Google Scholar 

  14. Dolado JS, Griebel M, Hamaekers J (2007) A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. J Am Ceram Soc 90:3938–3942

    Google Scholar 

  15. Garofalini SH, Zhang S (2010) Molecular dynamics simulations of the effect of the composition of the intergranular film on fracture in Si3N4. J Am Ceram Soc 93:235–240

    Article  Google Scholar 

  16. Hamid S (1981) The crystal structure of the 11 A natural tobermorite Ca2.25Si3 O7.5(OH)1.5H2O. Zeitschrifit fur Kristallographie 154:189–198

    Google Scholar 

  17. Heinz H, Lin TJ, Kishore Mishra R, Emami FS (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29:1754–1765

    Article  Google Scholar 

  18. Heinz H, Suter UW (2004) Atomic charges for classical simulations of polar systems. J Phys Chem B 108:18341–18352

    Article  Google Scholar 

  19. Ishikawa K, Asaoka K (1995) Estimation of ideal mechanical strength and critical porosity of calcium-phosphate cement. J Biomed Mater Res 29:1537–1543

    Article  Google Scholar 

  20. Janika JA, Kurdowsk W, Podsiadey R, Samset J (2001) Fraxtal structure of CSH and tobermorite phases. Acta Phys Polonic 100:529–537

    Google Scholar 

  21. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(30):101–116

    Article  Google Scholar 

  22. Jennings HM (2008) Refinements to colloid model of C–S–H in cement: CM II. Cem Concr Res 38:275–289

    Article  Google Scholar 

  23. Ji Q, Pellenq RJM, Van Vliet KJ (2012) Comparison of computational water models for simulation of calcium silicate hydrate: computational Material. Science 53:234–240

    Google Scholar 

  24. Kendall K, Howard AJ, Birchall JD (1983) The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials. Philos Trans R Soc A 310:139–153

    Article  Google Scholar 

  25. Lammps, 2008, LAMMPS Molecular Dynamics Simulator

  26. Lesko S, Lesniewska E, Nonat A, Mutin J, Goudonnet J (2001) Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy 82(1–2):11–21

    Article  Google Scholar 

  27. Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57

    Article  Google Scholar 

  28. Mai YW, Cotterell B (1985) Porosity and mechanical-properties of cement mortar. Cem Concr Res 15:995–1002

    Article  Google Scholar 

  29. Manzano H, Dolado JS, Ayuela A (2009) Elastic properties of the main species present in Portland cement pastes: Acta Mater 57(57):1666–1674

    Article  Google Scholar 

  30. Manzano H, Masoero E, Arbeloa IL, Jennings HM (2013) Molecular modelling of shear deformations in ordered and disordered Calcium Silicate Hydrates. Soft Matter 9:7333–7341

    Article  Google Scholar 

  31. Manzano H, Moeini S, Marinelli F, van Duin ACT, Ulm FJ, Pellenq RJM (2011) Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. J Am Chem Soc 134:2208–2215

    Article  Google Scholar 

  32. Merlino S, Bonnacorsi E, Armbruster T (2001) The real structure of tobermorite 11 A: normal and anomalous forms, OD character and polyptic modifications. Eur J Mineral 13:577–590

    Article  Google Scholar 

  33. Mishra RK, Flatt RJ, Heinz H (2013) Force field for tricalcium silicate and insight into nanoscale properties: cleavage, initial hydration, and adsorption of organic molecules. J Phys Chem C 117:10417–10432

    Article  Google Scholar 

  34. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013) Densification of C–S–H measured by H NMR relaxometry. J Phys Chem C 117:403–412

    Article  Google Scholar 

  35. Murray SJ, Subramani VJ, Selvam RP, Hall KD (2010) Molecular dynamics to understand the mechanical behavior of cement paste. J Transp Res Board 2142:75–82

    Article  Google Scholar 

  36. Nonat A (2004) The structure and stoichiometry of CSH. Cem Concr Res 34:1521–1528

    Article  Google Scholar 

  37. Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20:4356–4366

    Article  Google Scholar 

  38. Pelisser F, Gleize PJP, Mikowski A (2012) Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C–S–H measured by nanoindentation. J Phys Chem C 116:17219–17227

    Article  Google Scholar 

  39. Pellenq RJM, Kushima A, Shahsavari R, Van Vliet KJ, Buehler MJ, Yip S (2009) A realistic molecular model of cement hydrates. PNAS 106:16102–16107

    Article  Google Scholar 

  40. Pellenq RJM, Lequeux N, Damme HV (2008) Engineering the bonding scheme in C–S–H: the iono-covalent framework. Cem Concr Res 38:159–174

    Article  Google Scholar 

  41. Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21:7263–7270

    Article  Google Scholar 

  42. Puibasset J, Pellenq RJM (2003) Water adsorption on hydrophilic mesoporous and plane silica substrates: a grand canonical Monte Carlo simulation study. J Chem Phys 118:5613

    Article  Google Scholar 

  43. Puibasset J, Pellenq RJM (2008) Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. Phys Chem B 112:6390–6397

    Article  Google Scholar 

  44. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  Google Scholar 

  45. Shahsavari R, Pellenq RJM, Ulm FJ (2011) Empirical force fileds for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys 13:1002–1011

    Article  Google Scholar 

  46. Shahsavari, R., 2011, Hierarchical Modeling of Structure and Mechanics of Cement Hydrate: PhD thesis of Massachusetts Institute of Technology

  47. Shahsavari R, Buechler MJ, Pellenq RJM, Ulm FJ (2009) First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite. J Am Ceram Soc 92(92):2323–2330

    Article  Google Scholar 

  48. Thomas JJ, Jennings HM, Allen AJ (2010) Relationships between composition and density of tobermorite, jennite, and nanoscale CaO–SiO2–H2O. J Phys Chem 114:7594–7601

    Google Scholar 

  49. Thomas TC (1963) Tensile bond strength between aggregate and cement paste or mortar. ACI J Proc 60:465–486

    Google Scholar 

  50. van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFsio Reactive Force Field for Silicon and Silicon Oxide Systems. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  51. Wang JW, Kalinichev AG, Kirkpatrick RJ (2004) Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochim Cosmochim Acta 68:3351–3365

    Article  Google Scholar 

  52. Youssef M, Pellenq RJM, Yildiz B (2011) Glassy nature of water in an ultraconfining disordered material: the case of calcium silicate hydrate. J Am Chem Soc 133:2499–2510

    Article  Google Scholar 

  53. Zhang S, Lu J, Ravichandran GJ (2002) Shock wave response of a zirconium-based bulk metallic glass and its composite. Appl Phys Lett 80:4522–4524

    Article  Google Scholar 

Download references

Acknowledgments

Financially support from the China Ministry of Science and Technology under Grant 2015CB655104 and the Chinese National Natural Science Foundation (NSF) under Grant 51178230 and 51378269, Major International Joint Research Project under Grant 51420105015 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Zhang, J., Li, Z. et al. Uniaxial tension study of calcium silicate hydrate (C–S–H): structure, dynamics and mechanical properties. Mater Struct 48, 3811–3824 (2015). https://doi.org/10.1617/s11527-014-0441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0441-1

Keywords

Navigation