Skip to main content
Log in

Investigating the use of autoclaved aerated concrete as an infill in reinforced concrete sandwich panels

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Reinforced concrete composite sandwich panels are typically made of two concrete wythes separated by an insulating core of rigid polystyrene foam. The strength of the panels relies mostly on the efficiency of the shear connectors between the two concrete wythes. The rigid foam is too weak in shear and provides no contribution to the shear resistance of the connectors. In this paper, autoclaved aerated concrete (AAC) is used as an insulating core in place of foam and its efficiency to transfer shear between the sandwich panel layers is investigated. A total of nine full scale specimens made of rigid foam and AAC are tested under flexural load with varying types of shear connectors. Their ultimate load capacities are compared and their respective modes of failure are discussed. A detailed analysis of the stiffness of the shear connectors is done and used to predict the deflection of the panels under the applied load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Shear connector area

P :

Total applied lateral load

b :

Panel width

q u :

Maximum shear flow at support

c :

Thickness of the inner core

Q :

First moment of area of lower concrete wythe

d :

Distance from center of upper wythe to center of lower wythe

Q 1 :

Shear force in panel associated with bending moment M 1

E A :

Modulus of elasticity of AAC

E c :

Modulus of elasticity of concrete

E s :

Shear connector modulus of elasticity

Q 2 :

Shear force in panel associated with the additional vertical deflection w 2

t :

Thickness of the outer layer of the sandwich panel

F :

Axial connector force

T max :

Maximum tension

G :

Shear modulus of connector

I :

Moment of inertia of the faces about the centroid of the sandwich

I f :

Sum of the moment of inertia of the faces about their own centroids

I T :

Moment of inertia of the entire section

L :

Panel length

M max :

Maximum moment

n :

Number of connector lines across panel width

p :

Shear connector slope

V u :

Shear force at the support

w 1 :

Panel vertical deflection due to bending deformation of the panel

w 2 :

Panel vertical deflection due to shear stress in the core

γ :

Inner core shear deformation

τ :

Shear stress in the core

τ ave :

Average shear stress

τ max :

Maximum shear stress

References

  1. Seeber K et al (1997) State-of-the-art report on precast/prestressed sandwich wall panels: PCI Committee report. PCI J 42(2):1–61

    Google Scholar 

  2. Pfeifer DW, Hanson JA (1964) Precast Concrete Wall Panels: Flexural Stiffness of Sandwich Panels. Special Publication SP-11, American Concrete Institute, Farmington Hills, MI, pp 67–86

  3. Bush TD Jr, Stine GL (1994) Flexural behavior of composite precast sandwich panels with continuous truss connectors. PCI J 39(2):112–121

    Article  Google Scholar 

  4. Pessiki S, Mlynarczyk A (2003) Experimental evaluation of the composite behavior of precast concrete sandwich wall panels. PCI J 48(2):54–71

    Article  Google Scholar 

  5. Salmon DC, Einea A, Tadros MK, Culp TD (1997) Full scale testing of precast concrete sandwich panels. ACI Struct J 94(4):354–362

    Google Scholar 

  6. Naito C, Hoemann J, Bewick B, Hammons M (2009) Evaluation of shear tie connectors for use in insulated concrete sandwich panels. Air Force Research Laboratory Report, AFRL-RX-TY-TR-2009-4600

  7. Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon Press, Oxford

    Google Scholar 

  8. Frostig Y, Baruch M, Vilnay O, Sheinman I (1991) Bending of nonsymmetric sandwich beams with flexible core-bending behavior. J Eng Mech 117(9):1931–1952

    Article  Google Scholar 

  9. Thomsen OT (1992) Analysis of local bending effects in sandwich panels subjected to concentrated loads. In: Proceeding of Second International Conference on Sandwich Construction. March 9–12, University of Florida, Gainesville, USA

  10. Frostig Y, Baruch M, Vilnay O, Sheinman I (1992) Higher-order theory for sandwich beam behavior with transversely flexible core. J Eng Mech 118(5):1026–1043

    Article  Google Scholar 

  11. Straalen IJV. (2000) Comprehensive overview of theories for sandwich panels. In: Proceedings of Workshop on Modeling of Sandwich Structures and Adhesive Bonded Joints, Porto

  12. Salmon DC, Einea A (1995) Partially composite sandwich panel deflections. J Struct Eng 121(4):778–783

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. ElKashef.

Appendix

Appendix

According to [7], the shear force Q 1 associated with bending moment M 1 can be divided into two components.

$$- Q_{1} = Dw_{1}^{\prime \prime \prime } = E_{\text{c}} (I - I_{\text{f}} )w_{1}^{\prime \prime \prime } + E_{\text{c}} (I_{\text{f}} )w_{1}^{\prime \prime \prime }$$
(8)

Where the first term on the right hand side of the equation represents the shear, neglecting the effect of the flexural rigidity of the faces, and the second term takes into account the effect of this flexural rigidity.

E c is the modulus of elasticity of the faces which is made of concrete, I is the moment of inertia of the faces about the centroid of the sandwich and I f is the sum of the moment of inertia of the faces about their own centroids,

$$I = {{bt^{3} } \mathord{\left/ {\vphantom {{bt^{3} } 6}} \right. \kern-0pt} 6} + {{btd^{2} } \mathord{\left/ {\vphantom {{btd^{2} } 2}} \right. \kern-0pt} 2}$$
$$I_{f} = {{bt^{3} } \mathord{\left/ {\vphantom {{bt^{3} } 6}} \right. \kern-0pt} 6}$$

The first term in Eq. 8 which represents a state of constant shear stress τ across the thickness of the core, assumed to be relatively weak, can be replaced by\(- bd\tau\), thus Eq. 8 can be written in the form,

$$- Q_{1}^{{}} = - bd\tau + E_{\text{c}} (I_{\text{f}} )w_{1}^{\prime \prime \prime }$$
(9)

The shear stress τ will result in an additional deflection w 2

The relation between the core shear strain \(\gamma\)and the additional deflection is defined as, \(\gamma = {{w_{2}^{\prime } d} \mathord{\left/ {\vphantom {{w_{2}^{\prime } d} c}} \right. \kern-0pt} c}\)

τ can now be expressed in terms of \(w_{2}^{\prime }\) as follows, \(\tau = {{Gw_{2}^{\prime } d} \mathord{\left/ {\vphantom {{Gw_{2}^{\prime } d} c}} \right. \kern-0pt} c}\)

where G is the shear modulus of core.

Hence Eq. 9 can now be expressed in the form,

$$- Q_{1}^{{}} = - AGw_{2}^{\prime } + E_{c} (I_{f} )w_{1}^{\prime \prime \prime }$$
(10)

where \(A = {{bd^{2} } \mathord{\left/ {\vphantom {{bd^{2} } c}} \right. \kern-0pt} c}\)

Rearranging terms and noting that \(- Q_{1}^{{}} = Dw_{1}^{\prime \prime \prime }\), one can write, \(w_{2}^{\prime } = {{Q_{1} (1 - {{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I})} \mathord{\left/ {\vphantom {{Q_{1} (1 - {{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I})} {AG}}} \right. \kern-0pt} {AG}}\)

The term \(a^{2} = {{AG} \mathord{\left/ {\vphantom {{AG} {E_{c} I_{\text{f}} (1 - {{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I})}}} \right. \kern-0pt} {E_{c} I_{\text{f}} (1 - {{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I})}}\)is introduced.

$$E_{\text{c}} I_{\text{f}} w_{2}^{\prime } = {{Q_{1} } \mathord{\left/ {\vphantom {{Q_{1} } {a^{2} }}} \right. \kern-0pt} {a^{2} }}$$
(11)

w 2 will be resisted by the stiff concrete faces resulting in additional shear force\(Q_{2}^{{}} = - E_{\text{c}} (I_{\text{f}} )w_{2}^{\prime \prime \prime }\)

The total shear force \(Q = Q_{1} + Q_{2} = Q_{1} - E_{c} (I_{f} )w_{2}^{\prime \prime \prime }\)

The term \(w_{2}^{\prime \prime \prime }\) can be expressed in terms of Q 1 using Eq. 11

$$Q_{1}^{\prime \prime } - a^{2} Q_{1} = - a^{2} Q$$
(12)

The solution to the above differential equation is

$$- Q_{1} = C_{1} \cosh (ax) + C_{2} \sinh (ax) + Q$$
(13)

where x is measured along the length of the panel, and C 1 and C 2 are constants.

Now, we will apply the general equation, Eq. 13, to the loading case under study.

Considering the slab loaded under a 4-pt loading where the load is applied at points B and C as shown in Fig. 15.

Fig. 15
figure 15

Schematic for a panel under 4-Point load

Since the load is symmetrical, only half the panel will be considered. The equations governing the deflection are as follows:

For Part A-B, with x measured arbitrary from point B,

$$\begin{aligned} - Q_{1} &= C_{{1{\text{AB}}}} \cosh (ax) + C_{{2{\text{AB}}}} \sinh (ax) - W \\ EIw_{{1{\text{AB}}}}^{\prime \prime \prime } &= C_{{1{\text{AB}}}} \cosh (ax) + C_{{2{\text{AB}}}} \sinh (ax) - W \\ EIw_{{1{\text{AB}}}}^{''} &= C_{{1{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} a}} \right. \kern-0pt} a} + C_{{2{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} a}} \right. \kern-0pt} a} - Wx + 2C_{{3{\text{AB}}}}\\ EIw_{{1{\text{AB}}}}^{\prime }& = C_{{1{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} + C_{{2{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} - {{Wx^{2} } \mathord{\left/ {\vphantom {{Wx^{2} } 2}} \right. \kern-0pt} 2} + 2C_{{3{\text{AB}}}} x + C_{{4{\text{AB}}}} \\ EIw_{{1{\text{AB}}}}^{{}} &= C_{{1{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} + C_{{2{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - {{Wx^{3} } \mathord{\left/ {\vphantom {{Wx^{3} } 6}} \right. \kern-0pt} 6} + C_{{3{\text{AB}}}} x^{2} + C_{{4{\text{AB}}}} x + C_{{5{\text{AB}}}}\\ EI_{\text{f}} w_{{2{\text{AB}}}}^{\prime } &= - C_{{1{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} - C_{{2{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} + {W \mathord{\left/ {\vphantom {W {a^{2} }}} \right. \kern-0pt} {a^{2} }}\\ EI_{\text{f}} w_{{2{\text{AB}}}}^{{}} &= - C_{{1{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - C_{{2{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} + {{Wx} \mathord{\left/ {\vphantom {{Wx} {a^{2} }}} \right. \kern-0pt} {a^{2} }} - C_{{6{\text{AB}}}}\\ EI_{\text{f}} w_{{2{\text{AB}}}}^{\prime \prime } &= - C_{{1{\text{AB}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} a}} \right. \kern-0pt} a} - C_{{2{\text{AB}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} a}} \right. \kern-0pt} a} \\ EI_{\text{f}} w_{{2{\text{AB}}}}^{\prime \prime \prime } & = - C_{{1{\text{AB}}}} \cosh (ax) - C_{{2{\text{AB}}}} \sinh (ax) \end{aligned}$$

For Part B-C, with x measured arbitrary from mid-span

$$\begin{aligned} - Q_{1} &= C_{{1{\text{BC}}}} \cosh (ax) + C_{{2{\text{BC}}}} \sinh (ax) \\ EIw_{{1{\text{BC}}}}^{\prime \prime \prime } &= C_{{1{\text{BC}}}} \cosh (ax) + C_{{2{\text{BC}}}} \sinh (ax)\\ EIw_{{1{\text{BC}}}}^{\prime \prime } &= C_{{1{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} a}} \right. \kern-0pt} a} + C_{{2{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} a}} \right. \kern-0pt} a} + 2C_{{3{\text{BC}}}}\\ EIw_{{1{\text{BC}}}}^{\prime } &= C_{{1{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} + C_{{2{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} + 2C_{{3{\text{BC}}}} x + C_{{4{\text{BC}}}}\\ EIw_{{1{\text{BC}}}}^{{}} &= C_{{1{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} + C_{{2{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} + C_{{3{\text{BC}}}} x^{2} + C_{{4{\text{BC}}}} x + C_{{5{\text{BC}}}}\\ EI_{\text{f}} w_{{2{\text{BC}}}}^{\prime } &= - C_{{1{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }} - C_{{2{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{2} }}} \right. \kern-0pt} {a^{2} }}\\ EI_{\text{f}} w_{{2{\text{BC}}}}^{{}} &= - C_{{1{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - C_{{2{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - C_{{6{\text{BC}}}}\\ EI_{\text{f}} w_{{2{\text{BC}}}}^{\prime \prime } &= - C_{{1{\text{BC}}}} {{\sinh (ax)} \mathord{\left/ {\vphantom {{\sinh (ax)} a}} \right. \kern-0pt} a} - C_{{2{\text{BC}}}} {{\cosh (ax)} \mathord{\left/ {\vphantom {{\cosh (ax)} a}} \right. \kern-0pt} a} \\ EI_{\text{f}} w_{{2{\text{BC}}}}^{\prime \prime \prime } &= - C_{{1{\text{BC}}}} \cosh (ax) - C_{{2{\text{BC}}}} \sinh (ax) \end{aligned}$$

To determine the constants of integration, the boundary conditions and requirements for continuity at B will be considered.

Four boundary conditions are available in AB, with x measured arbitrary from point B are,

  1. (1)

    \(w_{{1{\text{AB}}}} = 0\) at \(x = 0\) (Arbitrary)

    $$C_{{2{\text{AB}}}} = - C_{{1{\text{AB}}}} \tanh (aL)$$
  2. (2)

    \(w_{{2{\text{AB}}}} = 0\) at \(x = 0\) (Arbitrary)

    $$C_{{3{\text{AB}}}} = {{WL} \mathord{\left/ {\vphantom {{WL} 2}} \right. \kern-0pt} 2}$$
  3. (3)

    \(M = - WL\) at \(x = 0\)

    $${{C_{{2{\text{AB}}}} } \mathord{\left/ {\vphantom {{C_{{2{\text{AB}}}} } {a^{3} }}} \right. \kern-0pt} {a^{3} }} = - C_{{6{\text{AB}}}}$$
  4. (4)

    \(w^{\prime \prime }_{{1{\text{AB}}}} = 0\) at \(x = L\)

    $${{C_{{2{\text{AB}}}} } \mathord{\left/ {\vphantom {{C_{{2{\text{AB}}}} } {a^{3} }}} \right. \kern-0pt} {a^{3} }} = - C_{{5{\text{AB}}}}$$

In part BC with x measured from midspan, five boundary conditions are available as follows,

  1. (5)

    \(w_{{1{\text{BC}}}} = 0\) at \(x = 0\) (Arbitrary)

    $$C_{3BC} = {{WL} \mathord{\left/ {\vphantom {{WL} 2}} \right. \kern-0pt} 2}$$
  2. (6)

    \(w_{{2{\text{BC}}}} = 0\) at \(x = 0\) (Arbitrary)

    $$C_{4BC} = 0$$
  3. (7)

    \(w^{\prime }_{2BC} = 0\) at \(x = 0\) (Arbitrary)

    $$C_{{1{\text{BC}}}} = 0$$
  4. (8)

    \(w^{\prime }_{{1{\text{BC}}}} = 0\) at \(x = 0\) (Arbitrary)

    $${{C_{{2{\text{BC}}}} } \mathord{\left/ {\vphantom {{C_{{2{\text{BC}}}} } {a^{3} }}} \right. \kern-0pt} {a^{3} }} = - C_{{5{\text{BC}}}}$$
  5. (9)

    \(M = - WL\) at \(x = 0\)

    $${{C_{{2{\text{BC}}}} } \mathord{\left/ {\vphantom {{C_{{2{\text{BC}}}} } {a^{3} }}} \right. \kern-0pt} {a^{3} }} = - C_{{6{\text{BC}}}}$$

Using continuity conditions at point B,

  1. (10)

    \(w^{\prime }_{1}\) is continuous

    $${{C_{{1{\text{AB}}}} } \mathord{\left/ {\vphantom {{C_{{1{\text{AB}}}} } {a^{2} }}} \right. \kern-0pt} {a^{2} }} + C_{{4{\text{AB}}}} = {{C_{{2{\text{BC}}}} \sinh ({{aL} \mathord{\left/ {\vphantom {{aL} 2}} \right. \kern-0pt} 2})} \mathord{\left/ {\vphantom {{C_{{2{\text{BC}}}} \sinh ({{aL} \mathord{\left/ {\vphantom {{aL} 2}} \right. \kern-0pt} 2})} {a^{2} + {{WL^{2} } \mathord{\left/ {\vphantom {{WL^{2} } 2}} \right. \kern-0pt} 2}}}} \right. \kern-0pt} {a^{2} + {{WL^{2} } \mathord{\left/ {\vphantom {{WL^{2} } 2}} \right. \kern-0pt} 2}}}$$
  2. (11)

    \(w^{\prime }_{2}\) is continuous

    $$C_{{4{\text{AB}}}} = {{{{ - W} \mathord{\left/ {\vphantom {{ - W} {a^{2} + }}} \right. \kern-0pt} {a^{2} + }}WL^{2} } \mathord{\left/ {\vphantom {{{{ - W} \mathord{\left/ {\vphantom {{ - W} {a^{2} + }}} \right. \kern-0pt} {a^{2} + }}WL^{2} } 2}} \right. \kern-0pt} 2}$$
  3. (12)

    \(w^{\prime \prime }_{1}\) is continuous

    $$C_{{2{\text{BC}}}} \cosh ({{3aL} \mathord{\left/ {\vphantom {{3aL} 2}} \right. \kern-0pt} 2}) = - W\sinh (aL)$$

The summation of w for part AB can be written as

$$\begin{gathered} w_{\text{AB}} = \left[ {{{\left( { - {{C_{{1{\text{AB}}}} \sinh (ax)} \mathord{\left/ {\vphantom {{C_{{1{\text{AB}}}} \sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - {{C_{{2{\text{AB}}}} \cosh (ax)} \mathord{\left/ {\vphantom {{C_{{2{\text{AB}}}} \cosh (ax)} {a^{3} - C_{{6{\text{AB}}}} + {{Wx} \mathord{\left/ {\vphantom {{Wx} {a^{2} }}} \right. \kern-0pt} {a^{2} }}}}} \right. \kern-0pt} {a^{3} - C_{{6{\text{AB}}}} + {{Wx} \mathord{\left/ {\vphantom {{Wx} {a^{2} }}} \right. \kern-0pt} {a^{2} }}}}} \right)} \mathord{\left/ {\vphantom {{\left( { - {{C_{{1{\text{AB}}}} \sinh (ax)} \mathord{\left/ {\vphantom {{C_{{1{\text{AB}}}} \sinh (ax)} {a^{3} }}} \right. \kern-0pt} {a^{3} }} - {{C_{{2{\text{AB}}}} \cosh (ax)} \mathord{\left/ {\vphantom {{C_{{2{\text{AB}}}} \cosh (ax)} {a^{3} - C_{{6{\text{AB}}}} + {{Wx} \mathord{\left/ {\vphantom {{Wx} {a^{2} }}} \right. \kern-0pt} {a^{2} }}}}} \right. \kern-0pt} {a^{3} - C_{{6{\text{AB}}}} + {{Wx} \mathord{\left/ {\vphantom {{Wx} {a^{2} }}} \right. \kern-0pt} {a^{2} }}}}} \right)} {EI_{\text{f}} }}} \right. \kern-0pt} {EI_{\text{f}} }}} \right]\left[ {1 - \left( {{{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I}} \right)} \right] \hfill \\ + \left[ {{{\left( {{{WL^{2} x} \mathord{\left/ {\vphantom {{WL^{2} x} 2}} \right. \kern-0pt} 2} + {{WLx^{2} } \mathord{\left/ {\vphantom {{WLx^{2} } 2}} \right. \kern-0pt} 2} - {{Wx^{3} } \mathord{\left/ {\vphantom {{Wx^{3} } 6}} \right. \kern-0pt} 6}} \right)} \mathord{\left/ {\vphantom {{\left( {{{WL^{2} x} \mathord{\left/ {\vphantom {{WL^{2} x} 2}} \right. \kern-0pt} 2} + {{WLx^{2} } \mathord{\left/ {\vphantom {{WLx^{2} } 2}} \right. \kern-0pt} 2} - {{Wx^{3} } \mathord{\left/ {\vphantom {{Wx^{3} } 6}} \right. \kern-0pt} 6}} \right)} {EI}}} \right. \kern-0pt} {EI}}} \right] \hfill \\ \end{gathered}$$
(14)

The maximum deflection for this part occurs at point x (one third of the panel length) = 93 cm

The summation of w for part BC can be written as

$$w_{\text{BC}} = \left[ {{{\left( {{{C_{{2{\text{BC}}}} \left( {1 - \cosh (ax)} \right)} \mathord{\left/ {\vphantom {{C_{{2{\text{BC}}}} \left( {1 - \cosh (ax)} \right)} {a^{3} }}} \right. \kern-0pt} {a^{3} }}} \right)} \mathord{\left/ {\vphantom {{\left( {{{C_{{2{\text{BC}}}} \left( {1 - \cosh (ax)} \right)} \mathord{\left/ {\vphantom {{C_{{2{\text{BC}}}} \left( {1 - \cosh (ax)} \right)} {a^{3} }}} \right. \kern-0pt} {a^{3} }}} \right)} {EI_{\text{f}} }}} \right. \kern-0pt} {EI_{\text{f}} }}} \right]\left[ {1 - \left( {{{I_{\text{f}} } \mathord{\left/ {\vphantom {{I_{\text{f}} } I}} \right. \kern-0pt} I}} \right)} \right] + \left[ {{{\left( {{{WLx^{2} } \mathord{\left/ {\vphantom {{WLx^{2} } 2}} \right. \kern-0pt} 2}} \right)} \mathord{\left/ {\vphantom {{\left( {{{WLx^{2} } \mathord{\left/ {\vphantom {{WLx^{2} } 2}} \right. \kern-0pt} 2}} \right)} {EI}}} \right. \kern-0pt} {EI}}} \right]$$
(15)

The maximum deflection for this part occurs at x (located at midspan) = 46.5 cm

The maximum deflection at midspan is the summation of the maxima for Eqs. 14 and 15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElKashef, M., AbdelMooty, M. Investigating the use of autoclaved aerated concrete as an infill in reinforced concrete sandwich panels. Mater Struct 48, 2133–2146 (2015). https://doi.org/10.1617/s11527-014-0298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0298-3

Keywords

Navigation