Skip to main content
Log in

Microstructural characteristics of lime-pozzolan pastes made from kaolin production wastes

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Lime-pozzolan mortars are often used in restoration of historical buildings. In this paper pastes prepared with hydrated lime and metakaolin from kaolin production wastes were examined in order to verify the performance of this waste as a pozzolanic material in mixes containing hydrated lime. Some specimens were cured in moist air and some in dry air. The compositions and microstructures at curing times up to 180 d were assessed using thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. The major phases found in the lime-metakaolin pastes were strätlingite (C2ASH8), monocarboaluminate (C4A\(\overline{\text{C}}\)H11), portlandite (CH) and calcite (C\(\overline{\text{C}}\)). The phases formed in these pastes were affected by curing conditions. In the moist cured samples the main phase was strätlingite and in the dry cured samples the main phase was monocarboaluminate. The portlandite was consumed by 28 d in moist curing and by 180 d in dry curing. SEM images showed that the morphology of lime-metakaolin pastes was influenced by curing condition and metakaolin content. In the moistured samples the morphologies of the main phases appeared very well formed with sharp edges, whereas in the dry cured samples the morphologies did not appear very well formed. This work shows that pastes using metakaolin made from kaolin production wastes had similar microstructural characteristics as have been reported for pastes made using commercial metakaolin. So this metakaolin is a suitable and environmentally friendly pozzolanic material for use in lime mortars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aggelakopoulou E, Bakolas A, Moropoulou A (2011) Properties of lime-metakaolin mortars for restoration of historic masonries. Appl Clay Sci 53:15–19

    Article  Google Scholar 

  2. Ambroise J, Maximilien S, Pera J (1994) Properties of metakaolin blended cements. Adv Cem Based Mater 1:161–168

    Article  Google Scholar 

  3. Azeredo AFN (2014) Estudo do resíduo de caulim em argamassas a base de cal quanto às suas propriedades frescas, endurecidas e microestruturais. Universidade Federal de Pernambuco, Brazil, Thesis

    Google Scholar 

  4. Bakolas A, Aggelakopoulou E, Moropoulou A, Anagnostopoulou S (2006) Evaluation of pozzolanic activity and physico-mechanical characteristics in metakaolin-lime pastes. J Therm Anal Calorim 84:157–163

    Article  Google Scholar 

  5. Barata MS, Dal Molin DCC (2002) Avaliação preliminar do resíduo caulinítico das indústrias de beneficiamento de caulim como matéria-prima na produção de uma metacaulinita altamente reativa. Ambiente Construído, vol. 2. n 1, ANTAC

  6. Bonilla TMA, Ferreira AF, Nóbrega AF, Silva ECR, Souza ML, Carneiro AMP (2010) Lime-metakaolin mortars applied on the Soledade palace, Recife, Brazil. In: Proceedings of the 2nd historic mortars conference HMC, Prague

  7. Cabrera J, Rojas MF (2001) Mechanism of hydration of the metakaolin-lime-water system. Cem Concr Res 31:177–182

    Article  Google Scholar 

  8. Chakchouck A, Trifi L, Samet B, Bouaziz S (2009) Formulation of blended cement: effect of process variables on clay pozzolan activity. Constr Build Mater 23:1365–1373

    Article  Google Scholar 

  9. Collepardi M (1990) Degradation and restoration of masonry walls of historical buildings. Mater Struct 23:81–102

    Google Scholar 

  10. Deer WA, Howie RA, Zussman J (1975) An introduction to the rock mineral. 8th edn, Longman group limited, London

  11. Fortes-Revilla C, Martiínez-Ramírez S, Blanco-Varela MT (2006) Modelling of slaked lime–metakaolin mortar engineering characteristics in terms of process variable. Cem Concr Res 28:458–467

    Article  Google Scholar 

  12. Rojas MF, Sánchez Rojas MI (2003) The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 °C. Cem Concr Res 33:643–649

    Article  Google Scholar 

  13. Gameiro A, Silva AS, Veiga R, Velosa A (2012) Hydration Products of lime-metakaolin pastes at ambient temperature with ageing. Thermochim Acta 535:36–41

    Article  Google Scholar 

  14. García R, de La Villa RV, Rodríguez O, Frías MR (2009) Mineral phases formation on the pozzolan/lime/water system. Appl Clay Sci 43:331–335

    Article  Google Scholar 

  15. Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic. Appl Clay Sci 20:73–80

    Article  Google Scholar 

  16. Klein C (2002) Manual of Mineral Science, 22nd edn. John Wiley & Sons, INC., USA

    Google Scholar 

  17. Kwan S, La Rosa J, Grutzeck MW (1995) Si and Al masnmr study of Stratlingite. J Am Ceram Soc 78:1921–1926

    Article  Google Scholar 

  18. Moropoulou A, Cakmak A, Labropoulous KC, Van Grieken R, Torfs K (2004) Accelerated microstructural evolution of calcium-silicate-hydrate (C–S–H) phase in pozzolanic pastes using fine siliceous sources: comparison with historic pozzolanic mortars. Cem Concr Res 34:1–6

    Article  Google Scholar 

  19. Murat M (1983) Hydration reaction and hardening of calcined clays and related minerals: i—preliminary investigation on metakaolinite. Cem Concr Res 13:259–266

    Article  Google Scholar 

  20. NBR 7175—Brazilian Standard (2003) Cal Hidratada para argamassas—requisitos. Rio de Janeiro

  21. Nóbrega AF (2007) Potencial de Aproveitamento de Resíduos de Caulim Paraibano Para o Desenvolvimento de Argamassas de Múltiplo Uso. Dissertation, Universidade Federal da Paraíba, Paraíba

  22. Nóbrega AF, Dantas KCB, Oliveira MP, Torres SM, Barbosa NP (2005) Avaliação do desempenho de argamassas com o uso de rejeito de caulim industrial como material de substituição do cimento Portland. In: Conferência Interamericana sobre Materiais e Tecnologias não-convencionais na Construção Ecológica e Sustentável, IAC-NOCMAT, Rio de Janeiro

  23. Nóbrega AF, Sousa P de, Marinho M and Carneiro AMP (2010) Estudo das Propriedades das Argamassas de Cal: Influência do Tipo de Metacaulim. 3rd Portuguese Congress on Construction Mortars. Anais,Lisboa, Portugal

  24. Oliveira MP (2004) Estudo de um caulim calcinado do estado da Paraíba como material de substituição parcial do cimento Portland. Dissertation, Universidade Federal de Campina Grande, Brazil

  25. Papayianni I, Stefanidou M (2006) Strength-porosity relationships in lime-pozzolan mortars. Constr Build Mater 20:700–705

    Article  Google Scholar 

  26. Pera J and Amrouz A (1998) Development of Highly Reactive Metakaolin from Paper Sludge. Advanced Cement Based Materials vol. 7

  27. Pinto AT (2004) Sistemas ligantes obtidos por activação alcalina do metacaulino. Universidade do Minho, Portugal, Thesis

    Google Scholar 

  28. Quarcioni VANJD (2008) Estudo da cal hidratada nas idades iniciais da hidratação do cimento Portland. Thesis, USP, São Paulo-Brazil

  29. Rojas MF, Cabrera J (2002) The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems. Cem Concr Res 32:133–138

    Article  Google Scholar 

  30. Sabir BB, Wild S, Bai J (2001) Metakaolin an calcined clays as pozzolan for concrete: a review. Cem Concr Compos 23:441–454

    Article  Google Scholar 

  31. Sepulcre-Aguilar A, Hernández-Olivares F (2010) Assessment of phase formation in lime-based mortars with added metakaolin, portland cement and sepiolite for grouting of historic masonry. Cem Concr Res 40:66–76

    Article  Google Scholar 

  32. Serry MA, Taha AS, El-Hemaly SAS, El-Didamony H (1984) Metakaolin-lime hydration products. Thermochim Acta 79:103–110

    Article  Google Scholar 

  33. Silva PS, Glasser FP (1993) Phase relations in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin—calcium hydroxide hydration. Cem Concr Res 23:627–639

    Article  Google Scholar 

  34. Souza PSL (2003) Verificação da influência do uso de metacaulim de alta reatividade nas propriedades mecânicas do concreto de alta resistência. Universidade Federal do Rio Grande do Sul, Brazil, Thesis

    Google Scholar 

  35. Taylor HFW (1997) Cement Chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  36. Tironi A, Trezza MA, Scian AN, Irassar EF (2012) Kaolinitic calcined clays: factors affecting its performance as pozzolans. Constr Build Mater 28:276–281

    Article  Google Scholar 

  37. Ubbríaco P, Tasseli F (1998) A study of the hydration of lime-pozzolan binders. J Therm Anal 52:1047–1057

    Article  Google Scholar 

  38. Veiga MR, Velosa A, Magalhães A (2009) Experimental applications of mortars with pozzolanic additions: characterization of performance evaluation. Constr Build Mater 23:318–327

    Article  Google Scholar 

  39. Vejmelková E, Keppert M, Rovnaníková P, ZbyněK K, Černý R (2012) Application of burnt clay shale as pozzolan addition to lime mortar. Cem Concr Compos 34:486–492

    Article  Google Scholar 

  40. Voinescu AE, Kellermeier M, Bartel B, Carnerup AM, Larsson AK, Touraud D, Kunz W, Kienle L, Pfitzner A, Hyde ST (2008) Inorganic self-organized silica aragonite biomorphic composites. Cryst Growth Des 8:1515–1521

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to CAPES Brazilian Funding and Federal University of Pernambuco-Brazil for the financial support to carry out this research at University of Illinois at Urbana-Champaign, USA. The Ceramic Materials Laboratory in Federal University of Campina Grande, Paraíba-Brazil, carried out the laser granulometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline F. Nóbrega de Azeredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Azeredo, A.F.N., Struble, L.J. & Carneiro, A.M.P. Microstructural characteristics of lime-pozzolan pastes made from kaolin production wastes. Mater Struct 48, 2123–2132 (2015). https://doi.org/10.1617/s11527-014-0297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0297-4

Keywords

Navigation