Skip to main content
Log in

Effect of heating–cooling cycles on transient creep strain of high performance, high strength and ordinary concrete under service and accidental conditions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, the variations of transient creep strain of high performance concrete, high strength concrete and ordinary concrete during a heating–cooling cycle are presented. Two heating rates are applied: 1.5 and 0.1 °C/min corresponding, respectively, to accidental and service conditions. The temperatures of 400 and 220 °C are the heating’s final temperature phase of the accidental and service conditions, respectively. Further, during the heating phase, the corresponding heating rates are applied until successive constant temperature levels are achieved: 150, 200, 300 and 400 °C under accidental conditions and 140, 190 and 220 °C under service conditions. Those applied temperatures are maintained for several hours to ensure the stabilisation of internal temperature and physico-chemical thermo-dependent processes. To study the importance of internal properties changes, especially those related to free and bound water, some specimens are submitted to a second heating cycle. Moreover, the influence of the difference in mix concretes and the influence of the heating rate are also presented.

Resumé

Dans cet article, les variations du fluage thermique transitoire du béton à haute performance, à haute résistance et d’un béton ordinaire durant un cycle de chauffage-refroidissement sont présentées ici. Deux taux de chauffage sont appliqués : 1.5 et 0.1 °C/min correspondants respectivement aux conditions accidentelles et de service. Les températures 400 et 220 °C sont les températures finales atteintes sous conditions accidentelles et de service respectivement. Outre, durant la phase de chauffage, les taux de chauffage sont appliqués jusqu’à atteindre les plateaux de températures suivant: 150, 200, 300 et 400 °C sous conditions accidentelles et 140, 190 and 220 °C sous conditions de service. Ces plateaux de température sont maintenus durant des heurs afin d’assurer la stabilisation de la température interne et les différents phénomènes physico-chimiques. Pour étudier l’importance de l’évolution des propriétés internes, et spécialement celles reliées à l’eau libre et chimiquement liée, des spécimens vont subir un deuxième cycle de chauffage. En plus, l’influence des différences dans les compostions des bétons et l’influence du taux de chargement sont aussi présentés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bouniol P, Sercombe J (1998) Aspect thermique du comportement des bétons de structure dans les entreposages. Scientific Report, Direction du Cycle du Combustible, CEA

  2. Luo X, Sun W, Chan YN (2000) Residual compressive strength and microstructure of high performance concrete after exposure to high temperature. Mater Struct 33:294–298

    Article  Google Scholar 

  3. Chan SYN, Luo X, Sun W (2000) Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr Build Mater 14:261–266

    Article  Google Scholar 

  4. Schneider U (1988) Concrete at high temperatures: a general review. Fire Saf J 13:55–68

    Article  Google Scholar 

  5. Khoury GA, Grainger BN, Sullivan PJE (1985) Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents. Mag Concr Res 37(132):131–144

    Article  Google Scholar 

  6. Khoury GA, Grainger BN, Sullivan PJE (1985) Strain of concrete during first heating to 600°C under load. Mag Concr Res 37(133):195–215

    Article  Google Scholar 

  7. Feraille-Fresnet A (2000) Le rôle de l’eau dans le comportement à haute température des bétons. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France

  8. Guo JS, Waldron P (2000) Development of the stiffness damage test (SDT) for characterisation of thermally loaded concrete. Mater Struct 33:483–491

    Article  Google Scholar 

  9. Khoury GA (1992) Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res 44(161):291–309

    Article  Google Scholar 

  10. Thienel K-Ch, Rostasy FS (1996) Transient creep of concrete under biaxial stress and high temperature. Cem Concr Res 26(9):1409–1422

    Article  Google Scholar 

  11. RILEM. TC 129-MHT (1997) Test methods for mechanical properties of concrete at high temperatures. Recommendations: Part 6: Thermal Strain. Materials and Structures, Supplement March, 17–21

  12. Gawin D, Majorana CE, Pesavento F. and Schrefler BA (2001) Modelling thermo-mechanical beahviour of high performance concrete in high temperature environments. Proceedings of Forth International Conference on Fracture mechanics of Concrete and Concrete Structures, Cachan

  13. Noumowé AN, Clastres P, Debicki G, Costaz JL (1996) Thermal stresses and water vapour pressure of high performance concrete at high temperature. Proceeding of the Fourth International Symposium on the Utilisation of High Strength/High Performance Concrete, Paris, 561–570

  14. Bazant ZP, Kaplan MF (1996) Concrete at high temperatures: material properties and mathematical models. Longman House, Burnt Mill

    Google Scholar 

  15. Li L, Purkiss J (2005) Stress-strain constitutive equations of concrete material at elevated temperatures. Fire Saf J 40:669–686

    Article  MATH  Google Scholar 

  16. Law A, Gillie M (2008) Load induced thermal strain: implications for structural behaviour. In: Proceedings of the fifth international conference on structures in fire, Singapore, pp 448–496

  17. Youssef MA, Moftah M (2007) General stress–strain relationship for concrete at elevated temperatures. Eng Struct 29:2618–2634

    Article  Google Scholar 

  18. Gernay T, Franssen J-M (2012) A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Saf J 51:1–9

    Article  Google Scholar 

  19. Sadaoui A, Khennane A (2009) Effect of transient creep on the behaviour of reinforced concrete columns in fire. Eng Struct 31(9):2203–2208

    Article  Google Scholar 

  20. Bazant ZP (1997) Analysis of pore pressure, thermal stresses and fracture in rapidly heated concrete. Proceeding of the International Workshop on Fire Performance of High-Strength Concrete, Gaithersburg, Maryland, NIST Special Publication, p 919

  21. Diederichs U, Jumppanen UM, Penttala V (1989) Material properties of high strength concrete at elevated temperatures. Proceeding of the 13th IABSE Congress Challenges to Structural Engineering, Helsinki, pp 489–494

  22. Kalifa P (1998) Le comportement des BHP à hautes températures, état de la question et résultats expérimentaux. Seminary of High Performance Concrete: innovations, regulations and new applications, French School of Concrete and National Project BHP 2000, Cachan, pp 27

  23. RILEM TC 129-MHT (1998) Test methods for mechanical properties of concrete at high temperatures. Recommendations: Part 7: Transient Creep for service and accident conditions. Mater Struct 31:290–295

    Article  Google Scholar 

  24. Colina H (2000) Etude du fluage thermique transitoire du béton. Advancement Report of CEA-ENPC Research Project, p 27

  25. Sabeur H, Colina H (2012) Effect of a heating–cooling cycle on elastic strain and Young’s modulus of high performance and ordinary concrete. Mater Struct 45:1861–1875

    Article  Google Scholar 

  26. Pimienta P, Hager I (2002) Evolution des caractéristiques des BHP soumis à des températures élevées (tranche 2). Fluage thermique transitoire. Rapport du CSTB pour le Projet National BHP 2000, pp 28

  27. Cheyrezy M (2000) Comportement au feu des BHP. Continuing Education Course on Fire Security and Concrete Structures, Ecole Nationale des Ponts et Chaussées, Paris, pp 7

  28. Daniela P (2004) Contribution à l’étude de la déshydratation dans les pâtes de ciment soumises à haute température. Ph.D. Thesis, ENPC, Paris

  29. Noumowe A (1995) Effet de hautes températures (20–600 °C) sur le béton: Cas particulier du béton à hautes performances. Institut National des Sciences Appliquées de Lyon et Univ. Lyon I, Thèse de Genie Civil

    Google Scholar 

  30. Khoury GA (1999) Mechanical behaviour of HPC and UHPC at high temperature in compression, Final HITECO BRITE report

  31. Kuttner CH, Ehlert G (1992) Experimental investigations of transitional creep of concrete at temperatures up to 1308C and boundary moisture conditions. Wissenschaftliche Zeitschrift der Hoschschule fur Bauwesen, Weimar 38:211–218

    Google Scholar 

  32. RILEM. TC 129-MHT (2000) Test methods for mechanical properties of concrete at high temperatures. Recommendations: Part 8: steady-state creep and creep recovery. Mater Struct 31:225

    Google Scholar 

  33. Sabeur H, Meftah F (2008) Dehydration creep of concrete at high temperatures. Mater Struct 41:17–30

    Article  Google Scholar 

  34. Khoury GA (2003) Testing conditions: course on effect of heat on concrete. International Center for Mechanical Sciences (CISM), Udine, p 25

    Google Scholar 

  35. Kalifa P, Menneteau F-D, Quenard D (2000) Spalling and pore pressure in HPC at high temperatures. Cem Concr Res 30:1915–1927

    Article  Google Scholar 

  36. Harada T, Takeda J, Yamane S, Furumura F (1972) Strength, elasticity and thermal properties of concrete subjected to elevated temperature. In: International seminar on concrete for nuclear reactors, paper SP34. ACI Special Publication, pp 377–406

  37. Sabeur H, Meftah F, Colina H, Plateret G (2006) Correlation between transient creep of concrete and its dehydration. Mag Concr Res 60(3):157–163

    Article  Google Scholar 

  38. Hager, I., November (2004) Propriétés mécaniques des bétons à haute performance à haute température: évolution des principales propriétés mécaniques, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, p 182 (in French)

  39. Thienel K-Ch, Rostky FS (1996) Transient creep of concrete under biaxial and high temperature. Cem Concr Res 26(9):1409–1422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen Sabeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabeur, H., Colina, H. Effect of heating–cooling cycles on transient creep strain of high performance, high strength and ordinary concrete under service and accidental conditions. Mater Struct 48, 1561–1579 (2015). https://doi.org/10.1617/s11527-014-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0254-2

Keywords

Navigation