Skip to main content
Log in

Residual compressive strength and microstructure of high performance concrete after exposure to high temperature

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Experimental programs were carried out to study compressive strength and microstructure of high performance concrete (HPC) subjected to high temperature compared with normal strength concrete (NSC). After the concrete specimens were exposed to a peak temperature of 800°C, the compressive strength was tested. Changes of porosity and pore size distribution of the concrete were measured by using mercury intrusion porosimetry (MIP). Test results show that high performance concrete had higher residual strength although the strength of high performance concrete degenerated much more than the normal strength concrete after high temperature exposed. Variations in pore structure of high performance concrete after high temperature indicated the degradation of the mechanical properties. A model by optimizing the parameters in Ryshkewitch model was developed to predict the relationship between porosity and compressive strength of the high performance concrete.

Résumé

Une série de programmes expérimentaux a été réalisée afin d'étudier la résistance à la compression et la microstructure des bétons à haute performance (BHP) soumis à de fortes températures par comparaison aux bétons ordinaires. Les bétons ont été soumis à une température extrême de 800°C, puis la résistance à la compression a été testée. Les changements de porosité et la répartition de la taille des pores dans le béton ont été mesurés par la technique de porosimétrie au mercure. Les résultats des essais ont montré que les bétons à haute performance présentaient des niveaux de résistance résiduelle mais que la résistance des bétons à haute performance se dégradait beaucoup plus que celle des bétons ordinaires après exposition à haute température. Des variations dans la structure des cavités des bétons à haute performance après exposition à de hautes températures ont indiqué la dégradation des propriétés mécaniques. L'étude a donné lieu au développement d'un modèle par optimisation des paramètres du modèle Ryshkewitch afin de prévoir les relations entre la porosité et la résistance à la compression du béton à haute performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castillo, C. and Durrani, A. J., ‘Effect of transient high temperature on high-strength concrete’,ACI Materials Journal 87 (1) (1990) 47–53.

    Google Scholar 

  2. Sanjayan, G. and Stocks, L. J., ‘Spalling of high-strength silica fume concrete in fire’, —Ibid.,90 (2) (1993) 170–173.

    Google Scholar 

  3. Zhang, B., ‘Relationship between pore structure and mechanical properties of ordinary concrete under bending fatigue’,Cement and Concrete Research 28 (5) (1998) 699–711.

    Article  Google Scholar 

  4. Lankard, D. R., Birkimer, D. L., Fondriest, F. F. and Synder M. J., ‘Effects of Moisture Content on the Structural Properties of Portland Cement Exposed to Temperatures up to 500 Deg. F.’, ACI Special Publication SP25, Detroit, 1971.

  5. Khoury, G. A., ‘Compressive strength of concrete at high temperatures: A reassessment’,Magazine of Concrete Research 44 (161) (1992) 291–309.

    Google Scholar 

  6. Sarshar, R. and Khoury, G. A., ‘Material and environmental factor influencing the compressive strength of unsealed cement paste and concrete at high temperatures’, —Ibid.45 (162) (1993) 51–61.

    Article  Google Scholar 

  7. Rostasy, S. F., Weib, R. and Wiedemann G., ‘Changes of pore structure of cement mortars due to temperature’,Cement and Concrete Research 10 (1980) 157–164.

    Article  Google Scholar 

  8. Chan, Y. N., Peng, G. F. and Chan, K. W., ‘Comparison between high strength concrete and normal strength concrete subjected to high temperature’,Mater. Struct. 29 (1996) 616–619.

    Google Scholar 

  9. Chan, Y. N., Peng, G. F. and Anson M., ‘Spalling Mechanism and Fire Resistance of High Performance Silica Fume Concrete with Different Moisture Content’ Proceedings of the 4th Beijing China, Oct. 1998,3 (1998) 149–153.

    Google Scholar 

  10. Feldman, R. F. and Beaudoin, J. J., ‘Microstructure and strength of hydrated cement’,Cement and Concrete Research 6 (1976) 398–400.

    Article  Google Scholar 

  11. Taylor, H. F. W., ‘A discussion of the paper: Microstructure and strength of hydrated cement by R. F. Feldman and J. J. Beaudoin’, —Ibid.7 (1977) 465–468.

    Article  Google Scholar 

  12. Bouguerra, A., Ledhem, A., Barquin, F., Dheilly, R. M. and Queneudec, M., ‘Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates’, —Ibid.28 (8) (1998) 1179–1190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Sun, W. & Chan, Y.N. Residual compressive strength and microstructure of high performance concrete after exposure to high temperature. Mat. Struct. 33, 294–298 (2000). https://doi.org/10.1007/BF02479699

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479699

Keywords

Navigation