Skip to main content
Log in

Study of aggregate samples with iron sulfides through micro X-ray fluorescence (μXRF) and X-ray photoelectron spectroscopy (XPS)

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Analyses of samples with iron sulfides are performed through micro X-ray fluorescence (μXRF) and X-ray photoelectron spectroscopy (XPS) in order to evaluate the possibilities offered by those techniques in the characterisation and quantification of iron sulfides contained in the aggregates used in concretes pursuant to the American standard ASTM_C_294-05 (ASTM C 294-05 standard descriptive nomenclature for constituents of concrete aggregates, 2005) and European standard EN_12620:2008 (EN 12620:2008. Aggregates for concrete, 2008) protocols. In the case of the American norm, which does not draw a distinction between the different sulfide species, μXRF may be sufficient if combined S and Fe mappings are used. XPS meets the demands both of the American and the European norms, which permits to distinguish sulfide types, and 0.1 % by mass of S can actually be detected if the aggregates contain pyrrhotite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ASTM_C_294-05 (2005) ASTM C 294-05 standard descriptive nomenclature for constituents of concrete aggregates

  2. Belzile N (2004) A review on pyrrhotite oxidation. J Geochem Explor 84(2):65–76. doi:10.1016/j.gexplo.2004.03.003

    Article  Google Scholar 

  3. Brion D (1980) Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Appl Surf Sci 5(2):133–152. doi:10.1016/0378-5963(80)90148-8

    Article  Google Scholar 

  4. Buckley AN, Woods R (1985) X-ray photoelectron spectroscopy of oxidized pyrrhotite surfaces. Appl Surf Sci 20(4):472–480. doi:10.1016/0378-5963(85)90168-0

    Article  Google Scholar 

  5. Carbone C, Marescotti P, Lucchetti G, Martinelli A, Basso R, Cauzid J (2012) Migration of selected elements of environmental concern from unaltered pyrite-rich mineralizations to Fe-rich alteration crusts. J Geochem Explor 114:109–117

    Article  Google Scholar 

  6. Chinchón-Payá S, Aguado A, Chinchón S (2012) A comparative investigation of the degradation of pyrite and pyrrhotite under simulated laboratory conditions. Eng Geol 127:75–80. doi:10.1016/j.enggeo.2011.12.003

    Article  Google Scholar 

  7. Chinchon JS, Ayora C, Aguado A, Guirado F (1995) Influence of weathering of iron sulfides contained in aggregates on concrete durability. Cem Concr Res 25(6):1264–1272. doi:10.1016/0008-8846(95)00119-w

    Article  Google Scholar 

  8. Chinchón JS, López-Soler A, Querol X, Vaquer R (1990) Determination of pyrrhotite (Fe1-xS) occurring in aggregates by X-ray fluorescence. Cem Concr Res 20:394–397

    Article  Google Scholar 

  9. Chinchón JS, López-Soler A, Travería A, Vaquer R (1988) X-ray fluorescence analysis of samples with elemental sulphur. Effect of sulphur sublimation. X-Ray Spectrom 17(217):218

    Google Scholar 

  10. Chinchón JS, López-Soler A, Travería A, Vaquer R (1991) XRF analysis of sulphur in aggregates used in concrete by the addition of Li2SO4. Mater Struct 24:13–14

    Article  Google Scholar 

  11. Chinchón JS, Vázquez E, Alastuey A, López-Soler A (1993) X-ray diffraction analysis of oxidizable sulphides in aggregates used in concrete. Mater Struct 26:24–29

    Article  Google Scholar 

  12. Davis JM, Newbury DE, Fahey A, Ritchie NWM, Vicenzi E, Bentz D (2011) Bridging the micro-to-macro gap: a new application for micro X-ray fluorescence. Microsc Microanal 17(03):410–417. doi:10.1017/s1431927611000183

    Article  Google Scholar 

  13. de Donato P, Mustin C, Benoit R, Erre R (1993) Spatial distribution of iron and sulphur species on the surface of pyrite. Appl Surf Sci 68(1):81–93. doi:10.1016/0169-4332(93)90217-y

    Article  Google Scholar 

  14. Durbetaki AJ, Carlson RH, Quail TF (1982) The X-ray analysis of uranium ores for iron sulfide minerals. Adv X-Ray Anal 25:113–115

    Google Scholar 

  15. EN_12620 (2008) EN 12620:2008. Aggregates for concrete

  16. Floyd M, Czerewko MA, Cripps JC, Spears DA (2003) Pyrite oxidation in lower lias clay at concrete highway structures affected by thaumasite, gloucestershire, UK. Cem Concr Compos 25(8):1015–1024. doi:10.1016/s0958-9465(03)00125-2

    Article  Google Scholar 

  17. Jones CF, LeCount S, Smart RSC, White TJ (1992) Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies. Appl Surf Sci 55(1):65–85

    Article  Google Scholar 

  18. Moulder JF, Chastain J, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics, Eden Prairie

    Google Scholar 

  19. Nesbitt HW, Muir IJ (1994) X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim Cosmochim Acta 58(21):4667–4679. doi:10.1016/0016-7037(94)90199-6

    Article  Google Scholar 

  20. Prieto-Taboada N, Maguregui M, Martinez-Arkarazo I, Olazabal MA, Arana G, Madariaga JM (2011) Spectroscopic evaluation of the environmental impact on black crusted modern mortars in urban–industrial areas. Anal Bioanal Chem 399(9):2949–2959

    Article  Google Scholar 

  21. Rickard D, Luther GW III (2007) Chemistry of iron sulfides. Chem Rev 107:514–562

    Article  Google Scholar 

  22. Schlegel MC, Mueller U, Panne U, Emmerling F (2011) Deciphering the sulfate attack of cementitious materials by high-resolution micro-X-ray diffraction. Anal Chem 83(10):3744–3749

    Article  Google Scholar 

  23. Shanahan N, Zayed A (2007) Cement composition and sulfate attack Part I. Cem Concr Res 37(4):618–623. doi:10.1016/j.cemconres.2006.12.004

    Article  Google Scholar 

  24. Taylor HFW (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to show their gratitude for the economic support received from Ministerio de Economía y Competitividad (Spain) through the Research Projects BIA2010-20913-C02-02 (PREDICEX) and BIA2011-28798-C02-02 “La reacción sulfática interna entre áridos con distintos compuestos de azufre y cementos de diferente contenido de aluminatos”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chinchón-Payá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinchón-Payá, S., Aguado, A., Coloma, F. et al. Study of aggregate samples with iron sulfides through micro X-ray fluorescence (μXRF) and X-ray photoelectron spectroscopy (XPS). Mater Struct 48, 1285–1290 (2015). https://doi.org/10.1617/s11527-013-0233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0233-z

Keywords

Navigation