Skip to main content
Log in

Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Due to ecological and environmental factors, re-using aged wood is becoming more and more important, also in applications where mechanical strength plays a central role. The aim of this study was to examine specific mechanical parameters of naturally aged and dried wood and to better understand the influence of aging on the elastic behaviour of wood. To this aim, measurements on boards and on small, clear wood specimens were carried out. Ultrasound velocities of longitudinal and, in some cases, of transversal waves were measured to determine dynamic elastic moduli and shear moduli. The measurements were performed on structural timber of aged Norway spruce (aged wood) and compared with specimens of recently cut and kiln dried timber of the same species (recent wood) as a reference with comparable density properties and average annual ring width. The measurements revealed higher values of dynamic elastic modulus for aged wood in the longitudinal and radial directions, but no significant difference was found in the tangential direction or in the shear moduli. It is supposed that the difference is more likely a consequence of variability in densities and the structure parameters (annual ring structure, microfibril angle, growth conditions) rather than a consequence of the wood age. The relation between the dynamic elastic modulus in the longitudinal direction and wood density was nearly the same for aged and recent wood specimens, so with increased prudence, grading methods developed for recent wood can also be applied for aged wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.woodwisdom.net/mm_files/do_849/GRADEWOOD_ProjectOverview.pdf

References

  1. Attar-Hassan G (1976) The effect of ageing on the mechanical properties of Eastern white pine. Bull Assoc Preserv Technol 8(3):64–73

    Article  Google Scholar 

  2. Blanchette RA, Haight JE, Koestler RJ, Hatchfield PB, Arnold D (1994) Assessment of deterioration in archaeological wood from ancient Egypt. J Am Inst Conserv 33(1):55–70

    Article  Google Scholar 

  3. Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger, Malabar

    Google Scholar 

  4. Borgin K (1973) The inherent durability of wood. Paper presented at the B.W.P.A. Annual Convention

  5. Borgin K, Faix O, Schweers W (1975) Effect of aging on lignins of wood. Wood Sci Technol 9(3):207–211

    Article  Google Scholar 

  6. Borgin K, Parameswaran N, Liese W (1975) Effect of aging on ultrastructure of wood. Wood Sci Technol 9(2):87–98

    Article  Google Scholar 

  7. Buck RD (1952) A note on the effect of age on the hygroscopic behavior of wood. Stud Conserv 1(1):39–44

    Article  Google Scholar 

  8. Bucur V (2006) Acoustics of Wood (Springer series in wood science). Springer, Berlin

    Google Scholar 

  9. Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18(4):255–265

    Article  Google Scholar 

  10. Chowdchury KA, Preston RD, White RK (1967) Structural changes in some ancient Indian timbers. Proc R Soc B 168:148–157

    Article  Google Scholar 

  11. Dívós F, Tanaka T (2005) Relation between static and dynamic modulus of elasticity of wood. Acta Silv Lignaria Hung 1:105–110

    Google Scholar 

  12. EN-12668-1 (2010) Non-destructive testing—characterization and verification of ultrasonic examination equipment—part 1: instruments. European Committee for Standardization, Brussels, Belgium

  13. Erhardt D, Mecklenburg MF, Tumosa CS, Olstad TM (1996) New versus old wood: differences and similarities in physical, mechanical, and chemical properties. Paper presented at the International Council of Museums-Committee for Conservation 11th triennial meeting, London

  14. Fengel D (1991) Aging and fossilization of wood and its components. Wood Sci Technol 25(3):153–177

    Article  Google Scholar 

  15. Fengel D, Stocklhuber P (1985) Comparison of extracts and lignin from green and seasoned pine wood (Pinus Sylvestris L.). Holz Als Roh-und Werkst 43(11):447–450

    Article  Google Scholar 

  16. Ganne-Chédeville C, Jääskeläinen A-S, Froidevaux J, Hughes M, Navi P (2011) Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 66:163–170

    Google Scholar 

  17. Hearmon RFS (1948) The elasticity of wood and plywood. Great Britain, Forest Products Research, London

  18. Holz D (1981) Zum alterungsverhalten des werkstoffes holz—einige ansichten, untersuchungen, ergebnisse. Holztechnologie 22(2):80–85

    MathSciNet  Google Scholar 

  19. Inagaki T, Mitsui K, Tsuchikawa S (2008a) NIR archaeometry as a powerful tool for investigating the archaeological wood—investigation of thermal degradation mechanism of softwood and hardwood. Paper presented at the wood science for preservation of cultural heritage: mechanical and biological factors, Braga, Portugal, 5–7 Nov, 2008

  20. Inagaki T, Yonenobu H, Tsuchikawa S (2008b) Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood. Appl Spectrosc 62(8):860–865

    Article  Google Scholar 

  21. Kawai S, Yokoyama M, Matsuo M, Sugiyama J (2008) Research on the aging of wood in RISH. Paper presented at the wood science for preservation of cultural heritage: mechanical and biological factors, Braga, Portugal, 5–7 Nov, 2008

  22. Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327. doi:10.1007/s00226-006-0107-4

    Article  Google Scholar 

  23. Kohara J, Okamoto H (1955) Studies of Japanese old timbers. Sci Rep Saikyo Univ 7(1):9–20

    Google Scholar 

  24. Kurtoglu A (1983) The properties of sorption of old spruce timber. Holzforsch Holzverw 35(6):125–126

    Google Scholar 

  25. Merz T (2009) Messung der Schallgeschwindigkeit in den drei Hauptschnittrichtungen mit Longitudinal- und Transversalwellen. BSc thesis, ETH Zürich, Zurich, Switzerland

  26. Mombächer R (1993) Altholz. Holz-Lexikon. DRW, Stuttgart

    Google Scholar 

  27. Narayanamurti D, Ghosh SS, Prasad BN, George J (1958) Note on examination of an old timber specimen. Holz Als Roh-und Werkst 16(7):245–247

    Article  Google Scholar 

  28. Narayanamurti D, Prasad BN, Verma GM (1961) Untersuchungen an alten Hölzern 3. Ein altes Pterocarpus Holz aus Tirupathi. Holz Als Roh-und Werkst 19(2):48–50

    Article  Google Scholar 

  29. Nisoli L (2009) Klimaabhängigkeit elasto-mechanischer Kenngrössen von Holz in drei Hauptrichtungen. BSc thesis, ETH Zurich, Zurich, Switzerland

  30. Noguchi T, Obataya E, Ando K (2011) Effects of ageing on the vibrational properties of Akamatsu (Pinus densiflora) wood. Paper presented at the wood culture and science, Kyoto, 6–9 Aug 2011

  31. Obataya E (2007) Characteristics of aged wood and Japanes traditional coating technology for wood protection. Paper presented at the conserver aujourd`hui: les “Vieillissements” du bois, Musee de la musique à la Cité de la musique, Paris, France

  32. Ozyhar T, Hering S, Sanabria SJ, Niemz P (2012) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol. doi:10.1007/s00226-012-0499-2

    Google Scholar 

  33. Popescu CM, Dobele G, Rossinskaja G, Dizhbite T, Vasile C (2007) Degradation of lime wood painting supports evaluation of changes in the structure of aged lime wood by different physico-chemical methods. J Anal Appl Pyrol 79(1–2):71–77. doi:10.1016/j.jaap.2006.12.014

    Article  Google Scholar 

  34. Rug W, Seemann A (1988) Festigkeit von altholz. Holztechnologie 29(4):186–190

    Google Scholar 

  35. Saito Y, Shida S, Ohta M, Yamamoto H, Tai T, Ohmura W, Makihara H, Noshiro S, Goto O (2008) Deterioration character of aged timbers insect damage and material aging of rafters in a historic building of Fukushoji-temple. Mokuzai Gakkaishi 54(5):255–262

    Article  Google Scholar 

  36. Sandomeer MK, Köhler J, Faber MH (2008) Probabilistic output control of structural timber—modelling approach. Paper presented at the 41st meeting, international council for research and innovation in building and construction, St. Andrews, Canada

  37. Sandoz J-L (1990) Grading and reliability of construction timber, validation of the ultrasound method. EPFL, Lausanne

    Google Scholar 

  38. Sandoz JL, Benoit Y (2007) Timber grading machine using ultrasonic and density measurements: Triomatic. Paper presented at the 15th international symposium on nondestructive testing of wood, Duluth, MN, USA, 10–12 Sep 2007

  39. Schniewind AP (1990) Physical and mechanical-properties of archaeological wood. In: Rowell R, Barbour RJ (eds) Archaeological wood properties, chemistry, and preservation. Advances in chemistry, vol 225. American Chemical Society, Washington, pp 87–109

    Chapter  Google Scholar 

  40. Schniewind AP, Barrett JD (1972) Wood as a linear orthotropic viscoelastic material. Wood Sci Technol 6(1):43–57

    Article  Google Scholar 

  41. Schulz H, von Aufsess H, Verron T (1984) Eigenschaften eines Fichtenbalkens aus altem Dachstuhl. Holz Roh Werkst 42(3):109

  42. Steiger R (1996) Mechanische eigenschaften von Schweizer fichten-bauholz bei biege-, zug-, druck- und kombinierter M/N-beanspruchung. Doctoral thesis, ETH Zurich, Basel, Switzerland

  43. Tsuchikawa S, Yonenobu H, Siesler HW (2005) Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method. Analyst 130(3):379–384. doi:10.1039/B412759e

    Article  Google Scholar 

  44. Unger A, Schniewind AP, Unger W (2001) Conservation of wood artifacts. Springer, Berlin

    Book  Google Scholar 

  45. Van Zyl JD, Van Wyk WJ, Heunis CM (1973) The effect of ageing on the mechanical and chemical properties of wood. Paper presented at the IUFRO-5 meeting: wood in the service of man, Pretoria, 22 Sep–12 Oct 1973

  46. Yokoyama M, Gril J, Matsuo M, Yano H, Sugiyama J, Clair B, Kubodera S, Mistutani T, Sakamoto M, Ozaki H, Imamura M, Kawai S (2009) Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. CR Phys 10(7):601–611. doi:10.1016/j.crhy.2009.08.009

    Article  Google Scholar 

  47. Yokoyama M, Itoh T, Kawai S (2005) Evaluation of the aging of wood: comparison between an accelerated aging treated wood and naturally aged wood. Paper presented at the international symposium on wood science and technology, Yokohama, Japan, 27–30 Nov 2005

  48. Yonenobu H, Tsuchikawa S (2003) Near-infrared spectroscopic comparison of antique and modern wood. Appl Spectrosc 57(11):1451–1453

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to Prof. Dr. Dr. Habil. Claus-Thomas Bues and Björn Günther (Dresden University of Technology) for dating the aged samples. The authors would also like to thank Chaletbau Matti (Saanen, Switzerland) for providing aged wood for the study and Melanie Wetzig for her contribution in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Kránitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kránitz, K., Deublein, M. & Niemz, P. Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Mater Struct 47, 925–936 (2014). https://doi.org/10.1617/s11527-013-0103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0103-8

Keywords

Navigation