Skip to main content
Log in

Aging and fossilization of wood and its components

  • Academy Lecture
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Aging of wood begins with the cutting of a tree. The subsequent changes of the wood substance proceed very slowly and depend on environmental conditions. In a hot, dry desert climate wooden objects and cellulose textiles are preserved for several millenia, whereas their degradation is accelerated by conditions which favor the attack of microorganisms.

Two conditions under which aging processes take place can be distinguished: a) aerobic conditions as prevailing in wooden buildings, sculptures etc.; b) anaerobic conditions valid for wooden items buried in the ground or submerged in water such as foundation pillars, ships etc. Submersion and underground embedding initiate the very slow process of fossilization in which the cell wall substance is transformed into highly condensed compounds (coalification) or is substituted by minerals (silicification).

The various wood components are subjected to different kinds of degradation and conversion. The polysaccharides disappear with aging and seem to be more sensitive than lignin. Although more resistant, the lignin is converted chemically and its structure differs increasingly from its original state. Even extractives may survive millions of years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assarsson, A. 1966: Studies on wood resin, especially the change in chemical composition during seasoning of the wood. Part 3. The chemical reactions of spruce wood (Picea abies Karst.) resin during chip seasoning. Svensk Papperstid. 69: 291–299

    Google Scholar 

  • Assarsson, A.; Akerlund, G. 1967: Studies on wood resin, especially the changes during seasong of the wood. Part 5. Changes in composition of nonvolatile extractives during water seasoning of unbarked spruce, pine, birch and aspen logs. Svensk Papperstid. 70: 205–212

    Google Scholar 

  • Assarsson, A.; Croon, I. 1963: Studies on wood resin, especially the change in chemical composition during seasoning of the wood. Part 1. Changes in the composition of the ethyl ether soluble part of the extractives from birch wood during log seasoning. Svensk Papperstid. 66: 876–883

    Google Scholar 

  • Assarsson, A.; Croon, I.; Donetzhuber, A. 1963: Studies on wood resin, especially the change in chemical composition during seasoning of the wood. Part 2. A comparison of chip seasoning of spruce wood (Picea abies Karst.) with log seasoning. Svensk Papperstid. 66: 940–948

    Google Scholar 

  • Barbour, R. J. 1984: The condition and dimensional stabilization of highly deteriorated waterlogged hardwoods. Waterlogged Wood. Study and Conservation. Proc. 2nd ICOM Waterlogged Wood Working Group Conf. Grenoble, Aug. 28–31, 1984, pp. 23–36

  • Beck, C. W. 1972: Aus der Bernsteinforschung. Naturwissensch. 59: 294–298

    Google Scholar 

  • Bednar, H.; Fengel, D. 1974: Physikalische, chemische und strukturelle Eigenschaften von rezentem und subfossilem Eichenholz. Holz Roh-Werkstoff 32: 99–107

    Google Scholar 

  • Borgin, K.; Parameswaran, N.; Liese, W. 1975a: The effect of aging on the ultrastructure of wood. Wood Sci.Technol. 9: 87–98

    Google Scholar 

  • Borgin, K.; Faix, O.; Schweers, W. 1975b: The effect of aging on lignins of wood. Wood Sci. Technol. 9: 207–211

    Google Scholar 

  • Brasch, D. J.; Jones, J. K. N. 1959: Investigation of some ancient woods. Tappi 42: 913–920

    Google Scholar 

  • Bues, C. T. 1986: Untersuchung einiger Eigenschaften von Tannenund Fichtenholz nach 17-jähriger Wasserlagerung. Holz Roh-Werkstoff 44: 7–15

    Google Scholar 

  • Buurman, P. 1974: Mineralization of fossil wood. Scripta Geol. 12: 1–43

    Google Scholar 

  • Chowdhury, K. A.; Preston, R. D.; White, R. K. 1967: Structural changes in some ancient Indian timbers. Proc. Roy. Soc. London, Ser. B. 168: 148–157

    Google Scholar 

  • Crook, F. M.; Nelson, P. F.; Sharp, D. W. 1965: An examination of ancient Victorian woods. Holzforschung 19: 153–156

    Google Scholar 

  • Croon, I. 1965: Harz-, Wachs-, Fett-Komponenten in Holz und Zellstoff. Papier 19: 711–719

    Google Scholar 

  • Donetzhuber, A.; Swan, B. 1965: Chemical changes of wood extractives on chip seasoning. Svensk Papperstid. 68: 419–429

    Google Scholar 

  • Dzbenski, W. 1970: Technical properties of excavatory oakwood (pol.). Sylvan 64: 1–27

    Google Scholar 

  • Ekman, R.; Fagernäs, L. 1983: Distribution of liquid components in peat extracts and their wax and resin fractions. Finn. Chem. Lett. 1983: 129–133

    Google Scholar 

  • Fagernäs, L.; Ekman, R. 1985: Content of lipids in Finnish peat mires. Techn. Res. Centre Finland, Publication 23, Espoo 1985

  • Fengel, D. 1971: Chemische und elektronenmikroskopische Untersuchung eines fossilen Fichtenholzes. Holz Roh-Werkstoff 29: 305–314

    Google Scholar 

  • Fengel, D. 1974: Polysaccharide in fossilen Hölzern. Naturwiss. 61: 450

    Google Scholar 

  • Fengel, D. 1976: Untersuchung von fossilen Holzproben mit Hilfe elektronenmikroskopischer und chemischer Methoden. Holz Roh-Werkstoff 34: 459–463

    Google Scholar 

  • Fengel, D. 1989: Unpublished results

  • Fengel, D.; Stöcklhuber, P. 1985: Vergleich der Extrakte und des Lignins aus frischem und gelagertem Kiefernholz (Pinus sylvestris L.). Holz Roh-Werkstoff 43: 447–450

    Google Scholar 

  • Fengel, D.; Wegener, G. 1988: Chemische Analysen von Fichtenholz nach 17-jähriger Wasserlagerung. Holz Roh-Werkstoff 46: 7–8

    Google Scholar 

  • Fengel, D.; Grosser, D.; Wegener, U. 1973: Anatomische und chemische Untersuchungen an zwei fossilen Nadelhölzern (Picea abies Karst. und Taxodioxylon gypsaceum (Goepp.) Kräusel). Palaeontographica B 144: 31–43

    Google Scholar 

  • Fischer, K.; Schmidt, I. 1983: Changes of lignin during outside chip storage and their causes. Cell. Chem. Technol. 17: 387–394

    Google Scholar 

  • Fujii, T.; Tamai, A.; Hiroi, T. 1988: Cell wall structure of buried wood of tochinoki (Aesculus turbinata Bl). Mokuzai Gakkaishi 34: 261–265

    Google Scholar 

  • Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K. 1986a: Microstructure and silica mineralization in the formation of silicified woods. I. Species identification of silicified wood and observations with a scanning electron microscope. Mokuzai Gakkaishi 32: 387–400

    Google Scholar 

  • Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K. 1986b: Microstructure and silica mineralization in the formation of silicified woods. II. Distribution of organic carbon and the formation of quartz in the structure of silicified woods. Mokuzai Gakkaishi 32: 575–583

    Google Scholar 

  • Furuno, T.; Suzuki, N.; Watanabe, T. 1988: Microstructure and silica mineralization in the formation of silicified woods III. The role of resinous content in silicification. Mokuzai Gakkaishi 34: 87–93

    Google Scholar 

  • Grosser, D.; Fengel, D.; Selmeier, A. 1974: Untersuchungen an alten und fossilen Hölzern. Forstwiss. Cbl. 93: 332–346

    Google Scholar 

  • Grzeczynski, T.; Surmanski, J. 1962: Study of chemical composition and strength properties of excavated wood (pol.). Folia For. Polon. No. 4B: 145–153

    Google Scholar 

  • Habermehl, G.; Hundrieser, H. J. 1983: 50 Millionen Jahre altes Coniferen-Lignin aus Messel. Naturwiss. 70: 249–250

    Google Scholar 

  • Hatcher, P. G. 1988: Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structure changes associated with defunctionalization of lignin structural units during coalification. Energy Fuels 2: 48–58

    Google Scholar 

  • Hatcher, P. G.; Breger, I. A.; Szeverenyi, N.; Maciel, G. E. 1982: Nuclear magnetic resonance studies of ancient buried wood. II Observations on the origin of coal from lignite to bituminous coal. Org. Geochem. 4: 9–18

    Google Scholar 

  • Hedges, J. I.; Cowie, G. L.; Ertel, J. R.; Barbour, R. J.; Hatcher, P. G. 1985: Degradation of carbohydrates and lignins in buried woods. Geochim. Cosmochim. Acta 49: 701–711

    Google Scholar 

  • Hoffmann, P.; Jones, M. A. 1990: Structure and degradation process for waterlogged archaeological wood. In: Archaeological Wood: Properties, Chemistry, and Preservation. (Rowell, R. M.; Barbour, R. J., Eds.) Adv. Chem. Ser. No. 225, pp. 35–65

  • Hoffmann, P.; Parameswaran, N. 1982: Chemische und ultrastrukturelle Untersuchungen an wassergesättigten Eichenhölzern aus archäologischen Funden. Berl. Beitr. Archäometrie 7: 273–285

    Google Scholar 

  • Hoffmann, P.; Peek, R. D.; Puls, J.; Schwab, E. 1986: Das Holz der Archäologen. Untersuchungen an 1,600 Jahre altem wassergesättigten Eichenholz der “Mainzer Römerschiffe”. Holz Roh-Werkstoff 44: 241–247

    Google Scholar 

  • Iiyama, K.; Kasuya, N.; Tuyet, L. T. B.; Nakano, J.; Sakaguchi, H. 1988: Chemical characterization of ancient buried wood. Holzforschung 42: 5–10

    Google Scholar 

  • Jagels, R.; Seifert, B.; Shottafer, J. E.; Wolfhagen, J. L.; Carlisle, J. D. 1988: Analysis of wet-site archaeological wood samples. For. Prod. J. 38, No. 5: 33–38

    Google Scholar 

  • Kim, Y. S. 1987: Micromorphological and chemical changes of archaeological woods from wrecked ship's timbers. Intern. Res. Group on Wood Pres.; 18th Meeting, Honey Harbour, Ont.; Canada, May 17–22, 1987

  • Kim, Y. S. 1990: Chemical characteristics of waterlogged archaeological wood. Holzforschung 44: 169–172

    Google Scholar 

  • Kommert, R.; Wienhaus, O. 1970: Untersuchungen chemischer und physikalischer Eigenschaften von Holz aus Kulthöhlen der Bronzezeit. Holztechnol. 11: 177–182

    Google Scholar 

  • Kotra, R. K.; Hatcher, P. G. 1988: Pyrolysis-gas chromatographic studies of the origin of the insoluble aliphatic components of peat. Naturwiss. 75: 196–198

    Google Scholar 

  • Krutil, D.; Kocon, J. 1982: Inorganic constituents and scanning electron microscopic study of oak wood (Quercus spec.). Holzforsch. Holzverwert. 34: 69–77

    Google Scholar 

  • Langenheim, J. H. 1969: Amber: A botancial inquire. Science 163: 1157–1169

    Google Scholar 

  • Mitra, G. B.; Sen, J. 1956: X-ray diffraction study of inorganic structural units in fossil wood. Am. J. Sci. 254: 257–259

    Google Scholar 

  • Nakao, T.; Tanaka, C.; Takahashi, A.; Okano, T.; Nishimura, H. 1989: Long-term changes in degree of crystallinity of wood cellulose. Holzforschung 43: 419–420

    Google Scholar 

  • Narayanamurti, D.; Gosh, S. S.; Prasad, B. N.; George, J. 1958: Untersuchungen an einer alten Holzprobe. Holz Roh-Werkstoff 16: 245–247

    Google Scholar 

  • Narayanamurti, D.; Gosh, S. S.; Prasad, B. N.; Verma, G. M. 1960: Untersuchungen an altem Holz aus dem Flußbett des Ganga bei Mokameh, Bilhar. Holz Roh-Werkstoff 18: 55–58

    Google Scholar 

  • Narayanamurti, D.; Prasad, B. N.; Verma, G. M. 1961: Ein altes Pterocarpus-Holz aus Tirupathi. Holz Roh-Werkstoff 19: 47–50

    Google Scholar 

  • Nilsson, T.; Daniel, G. 1990: Structure and aging process of dry archaeological wood. In: Archaeological wood: properties, chemistry, and preservation (Rowell, R. M.; Barbour, R. J.; Eds.) Adv. Chem. Ser. No. 225, pp. 67–86

  • Nip, M.; Tegelaar, E. W.; de Leeuw, J. W.; Holloway, P. J. 1986: A new non-saponifiable highly aliphathic and resistant biopolymer in plant cuticles. Evidence from pyrolysis and 13C-NMR analysis of present-day and fossil plants. Naturwiss. 73: 579–585

    Google Scholar 

  • Noshiro, S.; Suzuki, M. 1987: Fossil root and stemwood of Chionanthus retusus Lindl. et Paxt. from the late pleistocene of Akashi, Japan. IAWA Bull. n.s. 8: 125–133

    Google Scholar 

  • Obst, J. R.; Christensen, D. J.; Crawford, D. M.; Han, J. S.; Kuster, T. A.; Landucci, L. L.; Pettersen, R. C.; Schwandt, V. H.; Weselowski, M. F.; McMillan, N. J.; Blanchette, R. A.; Faix, O.; Newman, R. H. 1989: Characterization of Canadian arctic fossil woods. Intern. Symp. Wood Pulp. Chem., Raleigh, N. C., Proc., Tappi, Atlanta 1989, 289–308a

  • Ohashi, H.; Matsumiya, I.; Yasue, M. 1988: Fluctuation of extractives in the withering process of Cerdiphyllum japonicum sapwood. Res. Bull. Fac. Agr. Gifu Univ., No. 53: 315–326

    Google Scholar 

  • Ohashi, H.; Imai, T.; Yoshida, K.; Yasue, M. 1990: Characterization of physiological functions of sapwood fluctuation of extractives in the withering process of Japanese cedar wood. Holzforschung 44: 79–86

    Google Scholar 

  • Pan, D. R.; Tai, D. S.; Chen, C. L.; Robert, D. 1990: Comparative studies on chemical composition of wood components in recent and ancient woods of Bischofia polycarpa. Holz-forschung 44: 7–16

    Google Scholar 

  • Parameswaran, N.; Borgin, K. 1980: Micromorphological and analytical study of an ancient pinewood from Cyprus containing metallic copper. Holzforschung 34: 185–190

    Google Scholar 

  • Pecina, H.; Kommert, R. 1985: Infra-red spectral studies of wood from different historical periods (pol.). Folia For. Polon. B No. 16: 31–43

    Google Scholar 

  • Premovic, P. I.; Komatinovic, B. V.; Pugmire, R. J.; Woolfenden, W. R. 1988: Solid-state 13C-NMR of middle precambrian anthracite and related anthraxolite. Naturwiss. 75: 98–100

    Google Scholar 

  • Purelis, G. A. 1962: Microstructure of fossil plant cell walls. Am. J. Bot. 49: 663

    Google Scholar 

  • Reinprecht, L.; Kudela, J.; Cunderlik, I. 1988: Properties of the subfossil oakwood from the area Zelina voda (czech.). Drev. Vysk. 117: 79–92

    Google Scholar 

  • Reunanen, M.; Ekman, R.; Heinonen, M. 1989: Analysis of Finnish pine tar from the wreck of frigate St. Nikolai. Holzforschung 43: 33–39

    Google Scholar 

  • Ruetze, M.; Peek, R. D. 1987: Sekundärbefall von archäologischem Eichenholz. Holz Roh-Werkstoff 45: 300

    Google Scholar 

  • Sandermann, W. 1967: Holzfunde aus alten Kulturen. Bild d. Wiss. 1967: 207–217

    Google Scholar 

  • Sandermann, W.; Funke, H. 1970: Termitenresistenz alter Tempelhölzer aus dem Mayagebiet durch Saponine. Naturwiss. 57: 407–414

    Google Scholar 

  • Sandermann, W.; Dietrichs, H. H.; Gottwald, H. 1958: Untersuchung frühgeschichtlicher Hölzer und deren Bedeutung für den Holzschutz. Holz Roh-Werkstoff 16: 197–204

    Google Scholar 

  • Sauter, F.; Hayek, E. W. H.; Moche, W.; Jordis, U. 1987: Betulin aus archäologischem Schwelteer. Zeitschr. Naturforsch., C (Biosci.) 42: 1151–1152

    Google Scholar 

  • Scheiber, C.; Wagenführ, R. 1976: Subfossiles Eichenrundholz: Aufkommen, Eigenschaften und Verwendung in der DDR. Holztechnol. 17: 133–139

    Google Scholar 

  • Scurfield, G.; Segnit, E. R.; Anderson, C. A. 1974: Silicification of wood. Proc. Workshop SEM & Plant Sci. IIT Res. Inst., Chicago1974, pp. 385–396

    Google Scholar 

  • Selmeier, A. 1990: Anatomische Untersuchungen an verkieselten Hölzern. Holz Roh-Werkstoff 48: 111–115

    Google Scholar 

  • Smith, B. N.; Rivera, E. R.; Keel, J. R. 1973: 40,000-year-old pine wood from deep sediments near Prudhoe Bay, Alaska. Naturwiss. 60: 202

    Google Scholar 

  • Solár, R.; Reinprecht, L.; Kacik, F.; Melcer, I.; Horsky, D. 1987: Comparison of some physicochemical properties of carbohydrate and lignin part of contempory and subfossil oak wood. Cell. Chem. Technol. 21: 513–524

    Google Scholar 

  • Squirrell, J. P.; Clarke, R. W. 1987: An investigation into the condition and conservation of the hull of the Mary Rose. Part I: Assessment of the hull timber. Studies in Conservation 32: 153–162

    Google Scholar 

  • Staccioli, G.; Tamburini, U. 1988: Sedimentary pyrite in a buried gymnosperm. Holz Roh-Werkstoff 46: 436

    Google Scholar 

  • Stoll, M.; Fengel, D. 1988: Chemical and structural studies on ancient Egyptian linen. Berl. Beitr. Archäometrie 10: 151–172

    Google Scholar 

  • Tomellini, R.; Fengel, D. 1987: Unpublished results

  • Wayman, M.; Azhar, M. R.; Koran, Z. 1971: Morphology and chemistry of two ancient woods. Wood Fiber 3: 153–165

    Google Scholar 

  • Wazny, J. 1976: Deterioration of ancient wood in Biskupin archaeological excavations. Mater. Org. Beih. 3: 53–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to express my gratitude to members of my staff who have been involved in the study of ancient and fossilized wood as well as of Egyptian linen for the past 23 years: Monika Friedl, Margarete Przyklenk, Manfred Stoll, Ulrike Wegener, Maria Wenzkowski. Many thanks to the guests in my laboratory who worked in this field and whose results were included in this report: Yoon Soo Kim (Kwangju, Korea), Renzo Tomellini (Rome, Italy). And last but not least I am much indebted to several colleagues who provided me with slides or gave permission to reproduce their figures for the Academy Lecture: Takeshi Furuno (Matsue, Shimane, Japan) Dietger Grosser (Munich, FRG), John I. Hedges (Seattle, Wash., USA), Per Hoffmann (Bremerhaven, FRG), John R. Obst (Madison, Wisc., USA). Sylvia Schoske (Munich, FRG)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fengel, D. Aging and fossilization of wood and its components. Wood Sci.Technol. 25, 153–177 (1991). https://doi.org/10.1007/BF00223468

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223468

Keywords

Navigation