Skip to main content
Log in

Different ageing conditions on cementitious roofing tiles reinforced with alternative vegetable and synthetic fibres

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper discusses the effects of different ageing conditions on the mechanical and physical characteristics of cementitious roofing tiles reinforced with sisal and newsprint pulps, sisal strand fibre and polypropylene (PP) fibre. Roofing tiles with undulate shape were produced by a slurry de-watering and pressing technique. They were subjected to three distinct ageing conditions: fast carbonation, accelerated ageing cycles and fast carbonation plus accelerated ageing cycles. Fast carbonation did not improve the maximum load (ML), limit of proportionality (LOP), toughness and maximum deflection but did decrease their water absorption, apparent porosity and air permeability; however, after 50 heat and rain accelerated ageing cycles, it was ineffective in maintaining the mechanical properties (ML, LOP, toughness and deflection) of the tiles reinforced with vegetable fibres. The refined sisal pulp fibres led to roofing tiles with slightly higher LOP, toughness and maximum deflection than those reinforced with newsprint pulp fibres. PP fibres significantly improved the mechanical performance (ML, LOP, toughness and deflection) of the roofing tiles in relation to sisal strand fibres. The accelerated ageing cycles were effective in promoting severe degradation on the roofing tiles with sisal strand fibres, while the tiles reinforced with PP fibres were practically unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agopyan V, Savastano H Jr, John VM, Cincotto MA (2005) Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cem Concr Compos 27(5):527–536. doi:10.1016/j.cemconcomp.2004.09.004

    Article  Google Scholar 

  2. American Society for Testing and Materials C 948-81 (1981) Test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete. West Conshohocken

  3. Barra B, Bergo P, Alves C Jr, Savastano H Jr, Ghavami K (2012) Effects of methane cold plasma in sisal fibers. Key Eng Mater 517:458–468. doi:10.4028/www.scientific.net/KEM.517.458

    Article  Google Scholar 

  4. Brazilian Technical Standards Association (ABNT) NBR 13858-2 (2009) Concrete tiles: part 2: requirements and test methods, Rio de Janeiro (in Portuguese), 10 pp

  5. Campbell MD, Coutts RSP (1980) Wood fibre-reinforced cement composites. J Mater Sci 15:1962–1970. doi:10.1007/BF00550621

    Article  Google Scholar 

  6. Coutts RSP (2005) A review of Australian research into natural fibre cements composites. Cem Concr Compos 27(5):518–526. doi:10.1016/j.cemconcomp.2004.09.003

    Article  Google Scholar 

  7. Coutts RSP, Ridikas V (1982) Refined wood fibre-cement products. Appita 35(5):395–400

    Google Scholar 

  8. De Silva P, Bucea L, Moorehead DR, Sirivivatnanon V (2006) Carbonate binders: reaction kinetics, strength and microstructure. Cem Concr Compos 28(7):613–620. doi:10.1016/j.cemconcomp.2006.03.004

    Article  Google Scholar 

  9. Lhoneux B de, Alderweireldt L, Albertini E, Capot PH, Honorio A, Kalbskopf R (2004) Durability of polymer fibers in air-cured cement–cement roofing products. In: Proceeding the ninth international conference on inorganic-bonded composite materials, Vancouver, Canada

  10. Fabbri A, Corvisier J, Schubnel A, Brunet F, Goffé B, Rimmele G, Barlet-Gouédard V (2009) Effect of carbonation on the hydro-mechanical properties of Portland cements. Cem Concr Res 39(12):1156–1163. doi:10.1016/j.cemconres.2009.07.028

    Article  Google Scholar 

  11. Ferreira DF (2008) SISVAR: um programa para análises e ensino de estatística. Revista Symp 6:36–41

    Google Scholar 

  12. Gram HE (1988) Natural fibre reinforced cement and concrete. In: Swamy RN (ed) Concrete technology and design, vol 5. Blackie, Glasgow, pp 256–285

  13. Gram HE, Gut P (1994) Directives pour le controle de qualite. Quality control guidelines for fibre or micro concrete tiles. Serie Pedagogique TFM/TVM: Outil 23. Skat/BIT, St. Gallen, 69 pp

  14. Hachmi MH, Moslemi MA (1989) Correlation between wood–cement compatibility and wood extractives. For Prod J 39(6):55–58

    Google Scholar 

  15. Innocentini MDM, Pardo ARF, Pandolfelli VC (2000) Modified pressure–decay technique for evaluating highly dense refractories permeability. J Am Ceram Soc 83(1):220–222. doi:10.1111/j.1151-2916.2000.tb01175.x

    Article  Google Scholar 

  16. Innocentini MDM, Pardo ARF, Menegazzo BA, Bittencourt LRM, Rettore RP, Pandolfelli VC (2002) Permeability of high-alumina refractory castables based on various hydraulic binders. J Am Ceram Soc 85(6):1517–1521. doi:10.1111/j.1151-2916.2002.tb00306.x

    Article  Google Scholar 

  17. Joaquim AP, Tonoli GHD, Santos SF, Savastano H Jr (2009) Sisal organosolv pulp as reinforcement for cement based composites. Mater Res 12(3):305–314. doi:10.1590/S1516-14392009000300010

    Article  Google Scholar 

  18. MacVicar R, Matuana LM, Balatinecz JJ (1999) Aging mechanisms in cellulose fiber reinforced cement composites. Cem Concr Compos 21(3):189–196. doi:10.1016/S0958-9465(98)00050-X

    Article  Google Scholar 

  19. Mohr BJ, Nanko H, Kurtis KE (2005) Durability of kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos 27(4):435–448. doi:10.1016/j.cemconcomp.2004.07.006

    Article  Google Scholar 

  20. Mohr BJ, Biernacki JJ, Kurtis KE (2006) Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cem Concr Res 36(7):1240–1251. doi:10.1016/j.cemconres.2006.03.020

    Article  Google Scholar 

  21. Roma LC Jr, Martello LS, Savastano H Jr (2008) Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Constr Build Mater 22(4):668–674. doi:10.1016/j.conbuildmat.2006.10.001

    Article  Google Scholar 

  22. Salomão R, Cardoso FA, Innocentini MDM, Bittencourt LRM, Pandolfelli VC (2003) Polymeric fibers and the permeability of refractory castables. Cerâmica 49(309):23–28. doi:10.1590/S0366-69132003000100006

    Google Scholar 

  23. Savastano H Jr (2002) Process for production of fibre-cement tiles reinforced with cellulose pulp, by slurry de-watering and pressing, and products obtained. Patent Brazil, Instituto Nacional de Propriedade Industrial INPI n. 0201204-9

  24. Savastano H Jr, Agopyan V, Nolasco AM, Pimentel LL (1999) Plant fibre reinforced cement components for roofing. Constr Build Mater 13(8):433–438. doi:10.1016/S0950-0618(99)00046-X

    Article  Google Scholar 

  25. Savastano H Jr, Warden PG, Coutts RSP (2000) Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos 22(5):379–384. doi:10.1016/S0958-9465(00)00034-2

    Article  Google Scholar 

  26. Silva AC, Savastano H Jr, John VM (2009) Aging of composites based on blast furnace slag and reinforced with eucalyptus residual cellulose pulp. Ambiente Construído 9(1):25–44

    Google Scholar 

  27. Tolêdo Filho RD, Ghavami K, England GL, Scrivener K (2003) Development of vegetable fibre-mortar composites of improved durability. Cem Concr Compos 25(2):185–196. doi:10.1016/S0958-9465(02)00018-5

    Article  Google Scholar 

  28. Tonoli GHD, Joaquim AP, Arsene MA, Bilba K, Savastano H Jr (2007) Refinement of sisal pulp: effect on the mechanical performance and durability of cement based composites. Mater Manuf Process 22(2):149–156. doi:10.1080/10426910601062065

    Article  Google Scholar 

  29. Tonoli GHD, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Rocco Lahr FA (2009) Cellulose modified fibres in cement based composites. Composites A 40(12):2046–2053. doi:10.1016/j.compositesa.2009.09.016

    Article  Google Scholar 

  30. Tonoli GHD, Fuente E, Monte C, Savastano H Jr, Rocco Lahr FA, Blanco A (2009) Effect of fibre morphology on flocculation of fibre-cement suspensions. Cem Concr Res 39(11):1017–1022. doi:10.1016/j.cemconres.2009.07.010

    Article  Google Scholar 

  31. Tonoli GHD, Santos SF, Joaquim AP, Savastano H Jr (2010) Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr Build Mater 24(2):193–201. doi:10.1016/j.conbuildmat.2007.11.018

    Article  Google Scholar 

  32. Tonoli1 GHD, Savastano H Jr, Santos SF, Dias CMR, John VM, Rocco Lahr FA (2011) Hybrid reinforcement of sisal and polypropylene fibers in cement-based composites. J Mater Civil Eng 23(2):177–187. doi:10.1061/(ASCE)MT.1943-5533.0000152

Download references

Acknowledgments

Financial support for this research project and scholarships to the authors were provided by Financiadora de Estudos e Projetos (Finep), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), Brazil. Sisal kraft pulp was provided by Lwarcel Celulose e Papel Ltda., Lençóis Paulista, SP, Brazil. Newsprint recycled mechanical pulp and cementitious raw materials were kindly furnished by Infibra Ltda., Leme/SP, Brazil. Thanks also to Brazilian Research Network in Lignocellulosic Composites and Nanocomposites—RELIGAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, R.S., Tonoli, G.H.D., Santos, S.F. et al. Different ageing conditions on cementitious roofing tiles reinforced with alternative vegetable and synthetic fibres. Mater Struct 47, 433–446 (2014). https://doi.org/10.1617/s11527-013-0070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0070-0

Keywords

Navigation