Skip to main content
Log in

Revisiting the shear design equations for concrete beams reinforced with FRP rebar and stirrup

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Current design guidelines and codes use modified shear equations for calculating the shear strength contribution of fiber reinforced polymer (FRP) transverse reinforcement (stirrup) in concrete beams reinforced with longitudinal steel or FRP rebar. These equations, originally developed for steel as longitudinal and transverse reinforcement, are semi-empirical in nature and were developed with a core analytical equation where the coefficients were determined from regression analysis. Here, a comparative study among various code equations was conducted to predict the shear strength of FRP reinforced concrete beams. To facilitate this comparison a database was established from the published literature, which was composed of slender concrete beams (shear span to depth ratio, a/d >2.5) with FRP longitudinal and transverse reinforcement. The database contained 114 beams without transverse reinforcement and 46 beams with transverse reinforcement. The guidelines, codes and models that were implemented and compared in this study consisted of ACI 440.1R-06, JSCE 1997, CNR-DT 203, CSA S806-02, CSA S6-06, unpublished CSA S6-06 Addendum, ISIS-M03-01, simplified Modified Compression Field Theory, cracked section analysis model and modified Zsutty equations. It was observed from the statistical analysis that the CSA S806-02 produced greater coefficients of variation than the CSA S6-09. The ACI 440.1R-06 and JSCE 1997 produced more conservative results in calculating the transverse shear strength. The CSA S6-09 Addendum exhibited the best all-around performance in predicting the shear contribution of FRP reinforced beams compared to that of other design codes and guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. ACI-ASCE Committee 445 (1998) Recent approaches to shear design of structural concrete. J Struct Eng 124(12):1375–1417

    Article  Google Scholar 

  2. ACI Committee 440 (2006) Guide for the design and construction of structural concrete reinforced with FRP bars. ACI 440.1R-06. American Concrete Institute, Farmington Hills, p 44

    Google Scholar 

  3. Ahmed AE, El-Salakawy EF, Benmokrane B (2010) Shear performance of RC bridge girders reinforced with carbon FRP stirrups. ASCE J Bridge Eng 15(1):44–54

    Article  Google Scholar 

  4. Ahmed EA, El-Salakawy EF, Benmokrane B (2010) Performance evaluation of glass fiber-reinforced polymer shear reinforcement for concrete beams. ACI Struct J 107(1):53–62

    Google Scholar 

  5. Alam MS, Youssef MA, Nehdi ML (2010) Exploratory investigation on mechanical anchors for connecting SMA bars to steel of FRP bars. Mater Struct, Rilem, 43(1):91–107

    Google Scholar 

  6. Alsayed SH, Al-Salloum YA, Almusallam TH (1997) Shear design for beams reinforced by GFRP bars. In: Non-metallic (FRP) reinforcement for concrete structures: Proceedings of the third international symposium (FRPRCS-3), vol 2. Sapporo, 14–16 October 1997, pp 285–292

  7. Ashour AF (2006) Flexural and shear capacities of concrete beams reinforced with GFRP bars. Constr Build Mater 20:1005–1015

    Article  Google Scholar 

  8. Benmokrane B, El-Salakawy E, El-Ragaby A, Lackey T (2006) Designing and testing of concrete bridge decks reinforced with glass FRP bars. J Bridge Eng 11(2):217–229

    Article  Google Scholar 

  9. Bentz EC, Vecchio FJ, Collins MP (2006) Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J 103(4):614–624

    Google Scholar 

  10. Billah AHMM, Alam MS (2012) Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars. Constr Build Mater 28(1):730–742

    Article  Google Scholar 

  11. CNR (2006) Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. CNR-DT-203/2006, Advisory Committee on Technical Recommendations for Construction, Rome, p 39

  12. CSA (2002) Design and construction of building components with fibre-reinforced polymers. CSA standard CAN/CSA S806-02. Canadian Standards Association, Rexdale, ON. Canada, 177 pp

  13. CSA (2006) Canadian highway bridge design code. CSA standard CAN/CSA-S6-06. Canadian Standards Association, Rexdale, p 733

  14. Ehsani MR, Saadatmanesh H, Tao S (1995) Bond of hooked glass fiber reinforced plastic (GFRP) reinforcing bars to concrete. ACI Mater J 92(4):391–400

    Google Scholar 

  15. El-Sayed AK, El-Salakawy EF, Benmokrane B (2005) Shear strength of one-way concrete slabs reinforced with FRP. ASCE J Compos Constr 9(2):147–157

    Article  Google Scholar 

  16. El-Sayed AK, El-Salakawy EF, Benmokrane B (2006a) Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Struct J 103(3):383–389

    Google Scholar 

  17. El-Sayed AK, El-Salakawy EF, Benmokrane B (2006b) Shear strength of normal strength concrete beams reinforced with deformed GFRP bars. ACI Struct J 103(2):235–243

    Google Scholar 

  18. El-Sayed AK, Benmokrane B (2008) Evaluation of the new Canadian highway bridge design code shear provisions for concrete beams with fiber-reinforced polymer reinforcement. Can J Civ Eng 35:609–623

    Article  Google Scholar 

  19. FIB Task Group 9.3 (2007) FRP reinforcement in RC structures. Federation Internationale de Beton, Lausanne, p 147

  20. Fico R, Prota A, Manfredi G (2007) Assessment of Eurocode-like design equations for the shear capacity of FRP RC members. Compos Part B Eng 39:792–806

    Article  Google Scholar 

  21. Gross SP, Yost JR, Dinehart DW, Svensen E, Liu N (2001) Shear strength of normal and high strength concrete beams reinforced with GFRP bars. Bridge Mater: 426–437

  22. Gross SP, Dinehart DW, Yost JR, Theisz PM (2004) Experimental tests of high-strength concrete beams reinforced with CFRP bars. In 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, 20–23 July, p 8

  23. Guadagnini M, Pilakoutas K, Waldron P (2006) Shear resistance of FRP RC beams: experimental study. Compos Constr 10(6):464–473

    Article  Google Scholar 

  24. Hoult NA, Sherwood EG, Bentz EC, Collins MP (2008) Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs? ASCE J Compos Constr 12(2):125–133

    Article  Google Scholar 

  25. Li VC, Wang S (2002) Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams. ACI Mater J 99(1):11–21

    Google Scholar 

  26. Lima J, Barros J (2007) Design models for shear strengthening of reinforced concrete beams with externally bonded FRP composites: a statistical versus reliability approach. In: 8th International symposium on fiber reinforced polymer reinforcement for concrete structures, Patras, 16–18 July, p 10

  27. Machida A (ed) (1997) Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Concr Eng Series 23. JSCE, Tokyo, p 325

  28. Maruyama K, Zhao WJ (1994) Flexural and shear behaviour of concrete beams reinforced with FRP rods. In: Swamy N (ed) Proceedings of the international conference on corrosion and corrosion protection of steel in concrete, Sheffield, 24–28 July, pp1330–1339

  29. Matta F, Nanni A, Hernandex TM, Benmokrane B (2008) Scaling of strength of FRP reinforced concrete beams without shear reinforcement. In: Fourth international conference on FRP composites in civil engineering (CICE2008), Zurich, 22–24 July, p 6

  30. Nagasaka T, Fukuyama H, Tanigaki M (1993) Shear performance of concrete beams reinforced with FRP stirrups. ACI special publications. In: Nanni A, Dolan CW (eds) Fiber reinforced plastic reinforcement for concrete structures, ACI-SP-138, American Concrete Institute, Farmington Hills, pp 789–811

  31. Nakamura H, Higai T (1995) Evaluation of shear strength of concrete beams reinforced with FRP. Concr Libr Int 26:111–123

    Google Scholar 

  32. Nehdi M, El Chabib H, Aly Said A (2006) Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high-strength concrete (HSC) slender beams using artificial intelligence. Can J Civ Eng 33:933–944

    Article  Google Scholar 

  33. Nehdi M, El Chabib H, Aly Said A (2007) Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. ASCE J Mater Civ Eng 19(12):1033–1042

    Article  Google Scholar 

  34. Nehdi M, Alam M, Youssef MA (2010) Development of corrosion-free concrete beam-column joint with adequate seismic energy dissipation. Eng Struct 32(9):2518–2528

    Article  Google Scholar 

  35. NSERC (2009) Structures last four times longer. http://www.nserc-crsng.gc.ca/Partners-Partenaires/ImpactStory-Reussite_eng.asp?ID=1003. Accessed 5 August 2010

  36. Razaqpur AG, Isgor BO, Greenaway S, Selley A (2004) Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members. ASCE J Compos Constr 8(5):452–460

    Article  Google Scholar 

  37. Rizkalla SH, Tadros G (1994) Smart highway bridge in Canada. Concr Int 16(6):35–38

    Google Scholar 

  38. Shehata E, Morphy R, Rizkalla S (2000) Fibre reinforced polymer shear reinforcement for concrete members: behavior and design guidelines. Can J Civ Eng 27:859–872

    Article  Google Scholar 

  39. Steiner S, El-Sayed AK, Benmokrane B, Matta F, Nanni A (2008) Shear strength of large-size concrete beams reinforced with glass FRP bars. In: Advanced composite materials in bridges and structures (ACMBS-5), Winnipeg, 22–24 September, p 10

  40. Swamy N, Aburawi M (1997) Structural implications of using GFRP bars as concrete reinforcement. In: Non-metallic (FRP) reinforcement for concrete structures: Proceedings of the third international symposium (FRPRCS-3). Sapporo, 14–16 October, pp 503–510

  41. Tariq M, Newhook JP (2003) Shear testing of FRP reinforced concrete without transverse reinforcement. Proceedings, Annual conference - Canadian society for civil engineering, Moncton, NB, Canada, June 4-7: 1330-1339

  42. Tennyson RC, Mufti AA, Rizkalla S, Tadros G, Benmokrane B (2001) Structural health monitoring of innovative bridges in Canada with fiber optic sensors. Smart Mater Struct 10:560–573

    Article  Google Scholar 

  43. Tottori S, Wakui H (1993) Shear capacity of RC and PC beams using FRP reinforcement. ACI special publications: In: Nanni A, Dolan CW (eds) Fiber reinforced plastic reinforcement for concrete structures, ACI-SP-138, American Concrete Institute, Farmington Hills, pp 615–631

  44. Tureyen AK, Frosch RJ (2002) Shear tests of FRP-reinforced concrete beams without stirrups. ACI Struct J 99(4):427–434

    Google Scholar 

  45. Tureyen AK, Frosch RJ (2003) Concrete shear strength: another perspective. ACI Struct J 100(5):609–615

    Google Scholar 

  46. Zhao W, Maruyama K, Suzuki H (1995) Shear behaviour of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. In: Non-metallic (FRP) reinforcement for concrete structures: Proceedings of the second international RILEM symposium (FRPRCS-2), Ghent, 23–25 August, pp 352–359

  47. Zsutty T (1971) Shear strength prediction for separate categories of simple beam tests. ACI J 68(2):138–143

    Google Scholar 

Download references

Acknowledgment

The financial support of Natural Sciences and Engineering Research Council (NSERC) of Canada has been gratefully acknowledged for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahria Alam.

Appendix

Appendix

 

Model

Concrete shear equations

Transverse shear equation

ACI440.1R-06

\( V_{c} = \frac{2}{5}\sqrt {f^{'}_{c} } bc \)

\( c = kd \)

\( k = \sqrt {2\rho_{\text{fl}} n_{f} + \left( {\rho_{\text{fl}} n_{f} } \right)^{2} } - \rho_{\text{fl}} n_{f} \)

\( n_{f} = E_{\text{fl}} /E_{c} \)

\( V_{\text{fv}} = \frac{{A_{\text{fv}} \sigma_{\text{fv}} d}}{\text{s}} \)

\( \sigma_{\text{fv}} = 0.004E_{\text{fv}} \le \,f_{\text{FRPbend}} \)

\( f_{\text{FRPbend}} = \frac{{\left( {\frac{{0.05r_{b} }}{{d_{b} }} + 0.3} \right)}}{1.5}f_{\text{fv}} \,\le\, f_{\text{fv}} \)

CSA S6-09 Addendum [3]

\( V_{c} = 2.5\beta \varphi_{c} f_{\text{cr}} bd_{v} \)

\( f_{\text{cr}} = 0.4\sqrt {f^{'}_{c} } \)

\( d_{v} \ge \left\{ {\begin{array}{*{20}c} {0.9d} \\ {0.72h} \\ \end{array} } \right. \)

\( \beta = \frac{0.4}{{\left( {1 + 1500\varepsilon_{x} } \right)}} \times \frac{1300}{{\left( {1000 + s_{\text{ze}} } \right)}} \)

\( \varepsilon_{x} = \frac{{\left( {\left( {\frac{{M_{f} }}{d}} \right) + V_{f} + 0.5N_{f} } \right)}}{{2\left( {E_{\text{fl}} A_{\text{fl}} } \right)}} \le 0.003 \)

\( \varphi_{c} = 0.75 \)

\( A_{{v, { \min }}} = \frac{{0.3\sqrt {f^{'}_{c} } bs}}{{f_{\text{fv}} }} \)

If A v  > A v, min, s ze = 300 mm.

If A v  < A v, min, s ze = 35sz/(15 + ag) > 0.85s z , where s z is the crack spacing parameter and shall be taken as d v or as the distance between layers of distributed longitudinal reinforcement where each intermediate layer of such reinforcement has an area at least equal to 0.003bs z .

\( V_{\text{FRP}} = \frac{{\varphi_{f} A_{\text{fv}} \sigma_{\text{fv}} d_{v} { \cot }\theta }}{\text{s}} \)

\( \theta = \left( {29 + 7000\varepsilon_{x} } \right)\left( {0.88 + \frac{{s_{\text{ze}} }}{2500}} \right) \)

\( \sigma_{\text{fv}} {\text{ is the smaller of }}\left\{ {\begin{array}{*{20}c} {\left( {\frac{{\left( {\frac{{0.05r_{b} }}{{d_{b} }} + 0.3} \right)f_{\text{fv}} }}{1.5}} \right)} \\ {0.004E_{\text{fv}} } \\ \end{array} } \right. \)

\( \varphi_{f} = \left\{ {\begin{array}{*{20}c} {0.5\quad {\text{for GFRP}}} \\ {0.75\quad {\text{for CFRP}}} \\ \end{array} } \right. \)

CSA S6-06 [13]

\( V_{c} = 2.5\beta \varphi_{c} f_{\text{cr}} bd_{v} \sqrt {\frac{{E_{{{\text{f}}l}} }}{{E_{\text{s}} }}} \)

\( f_{\text{cr}} = 0.4\sqrt {f^{'}_{c} } \)

\( d_{v} \ge \left\{ {\begin{array}{*{20}c} {0.9d} \\ {0.72h} \\ \end{array} } \right. \)

\( \beta = \frac{0.4}{{\left( {1 + 1500\varepsilon_{x} } \right)}} \times 1300/\left( {1000 + s_{ze} } \right) \)

\( \varepsilon_{x} = \frac{{\left( {\left( {\frac{{M_{f} }}{d}} \right) + V_{f} + 0.5N_{f} } \right)}}{{2\left( {E_{\text{s}} A_{\text{s}} } \right)}} \le 0.003 \)

\( \varphi_{c} = 0.75 \)

\( A_{v, \min } = \frac{{0.3\sqrt {f^{'}_{c} } bs}}{{f_{\text{fv}} }} \)

If A v  > A v, min , s ze  = 300 mm.

If A v  < A v, min , s ze  = 35sz/(15 + ag) > 0.85s z , where s z is the crack spacing parameter and shall be taken as d v or as the distance between layers of distributed longitudinal reinforcement where each intermediate layer of such reinforcement has an area at least equal to 0.003bs z .

\( V_{\text{fv}} = \frac{{\varphi_{f} A_{\text{fv}} \sigma_{\text{fv}} d_{v} { \cot }\theta }}{s} \)

\( \sigma_{\text{fv}} {\text{ is the smaller of }}\left\{ {\begin{array}{*{20}c} {\left( {\frac{{\left( {\frac{{0.05r_{b} }}{{d_{b} }} + 0.3} \right)f_{\text{fv}} }}{1.5}} \right)} \\ {E_{\text{fv}} \varepsilon_{\text{fv}} } \\ \end{array} } \right. \)

\( \varepsilon_{\text{fv}} = 0.0001\left[ {f^{'}_{c} \times \frac{{\rho_{\text{fl}} E_{\text{fl}} }}{{\rho_{\text{fv}} E_{\text{fv}} }}} \right]^{0.5} \times \left[ {1 + 2\left( {\sigma_{N} /f^{'}_{c} } \right)} \right] \le 0.0025 \)

\( \varphi_{f} = \left\{ {\begin{array}{*{20}c} {0.5\quad {\text{for GFRP}}} \\ {0.75\quad {\text{for CFRP}}} \\ \end{array} } \right. \)

CSA S806-02 [12]

For h < 300 or minimum shear reinforcement provided.

\( V_{c} = 0.035\lambda \varphi_{c} \left( {f^{'}_{c} \rho_{\text{fl}} E_{f;} \frac{{V_{f} d}}{{M_{f} }}} \right)^{\frac{1}{3}} db \)

\( 0.1\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd \le V_{c} \le 0.2\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd \)

If h > 300 and less than minimum shear reinforcement provided

\( V_{c} = \left( {\frac{130}{1000 + d}} \right)\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd < 0.08\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd \) \( \varphi_{c} = 0.6 \)

\( A_{{v, { \min }}} = \frac{{0.3\sqrt {f^{'}_{c} } bs}}{{f_{\text{fv}} }} \)

\( V_{\text{fv}} = \frac{{0.4\varphi_{f} A_{v} f_{\text{fv}} d}}{s} < 0.6\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd \)

\( \varphi_{f} = 0.75 \)

JSCE guidelines [27]

\( V_{c} = \beta_{d} \beta_{p} \beta_{n} f_{\text{vcd}} bd/\gamma_{b} \)

\( f_{\text{vcd}} = 0.2\left( {f^{'}_{c} } \right)^{\frac{1}{3}} \le 0.72 {\text{MPa}} \)

\( \beta_{d} = \left( \frac{1000}{d} \right)^{\frac{1}{4}} \le 1.5 \)

\( \beta_{p} = \left( {100\frac{{\rho_{\text{fl}} E_{\text{fl}} }}{{E_{\text{s}} }}} \right)^{\frac{1}{3}} \le 1.5 \)

\( \beta_{n} = 1 + \frac{{M_{o} }}{{M_{d} }} \le 2 {\text{for}} N_{f} \ge 0 \)

\( \beta_{n} = 1 + \frac{{2M_{o} }}{{M_{d} }} \le 2 {\text{for}} N_{f} < 0 \)

\( \gamma_{b} = 1.3 \)

\( V_{\text{fv}} = \frac{{\left[ {\frac{{A_{\text{fv}} \sigma_{\text{fv}} \left( {\sin \alpha_{s} + \cos \alpha_{s} } \right)}}{s}} \right]jd}}{{\gamma_{b} }} \le \frac{{f_{\text{FRPbend}} }}{{E_{\text{fv}} }}bd \)

\( jd = d/1.15 \)

\( \sigma_{\text{fv}} {\text{ is the smaller of}} \left\{ {\begin{array}{*{20}c} {\left( {\frac{{\left( {\frac{{0.05r_{b} }}{{d_{b} }} + 0.3} \right)f_{\text{fv}} }}{1.5}} \right)} \\ {E_{\text{fv}} \varepsilon_{\text{fv}} } \\ \end{array} } \right. \)

\( \varepsilon_{\text{fv}} = 0.0001\sqrt {f_{\text{mcd}}^{'} \times \frac{{\rho_{{{\text{f}}l}} E_{{{\text{f}}l}} }}{{\rho_{\text{fv}} E_{\text{fv}} }}} \)

\( f^{'}_{\text{mcd}} = \left( \frac{h}{100} \right)^{{ - \frac{1}{10}}} f^{'}_{c} \)

\( \gamma_{b} = 1.15 \)

CNR DT-203 [11]

\( V_{c} \le \left\{ {\begin{array}{*{20}c} {V_{\text{Rd,ct}} } \\ {V_{\text{Rd,ct max}} } \\ \end{array} } \right. \)

\( V_{\text{Rd,ct}} = 1.3\left( {\frac{{E_{\text{f}} }}{{E_{\text{s}} }}} \right)^{\frac{1}{2}} V_{\text{Rd,c}} \)

\( V_{\text{Rd,c}} = \tau_{\text{Rd}} k_{d} \left( {1.2 + 40\rho_{\text{fl}} } \right)bd \)

\( \tau_{\text{Rd}} = 0.25f_{{{\text{ctk}}0.05}} /\gamma_{c} \)

\( f_{{{\text{ctk}}0.05}} = 0.05\,f^{'}_{c} \gamma_{c} = 1.6 \)

\( 1.3\left( {\frac{{E_{\text{f}} }}{{E_{\text{s}} }}} \right)^{\frac{1}{2}} \le 1 \)

If more than 50 % of the bottom reinforcement is interrupted:

\( k_{d} = 1 \)

If less than 50 % of bottom reinforcement is interrupted:

\( k_{d} = \left( {1.6 - d} \right), d {\text{in meters}} \)

\( V_{\text{Rd,ct max}} = \frac{1}{2}vf_{\text{cd}} b0.9d \)

\( v = 0.7 - f^{'}_{c} /200 \ge 0.5 \)

\( V_{\text{fv}} = \frac{{A_{v} f_{\text{fr}} d}}{s} \)

\( f_{\text{fr}} = \frac{{f_{\text{fd}} }}{{\gamma_{f,\varphi } }} \)

\( f_{\text{fd}} = \frac{{f_{\text{fv}} }}{{\gamma_{f} }} \)

\( \gamma_{f} = 1.5 \)

If no specific experimental tests are performed, and that \( \frac{{r_{d} }}{{d_{b} }} \ge 6 \):

\( \gamma_{f,\varphi } = 2 \)

If specific experimental tests are performed:

\( \gamma_{f,\varphi } = \frac{{f_{\text{FRPbend}} }}{{f_{\text{fv}} }} \)

ISIS-M03-01 design manual [14]

If d ≤ 300 mm:

\( V_{c} = 0.2\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd\sqrt {\frac{{E_{\text{fl}} }}{{E_{\text{s}} }}} \)

If d > 300 mm:

\( \left. {V_{c} = \frac{260}{1000 + d}} \right)\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd\sqrt {\frac{{E_{\text{fl}} }}{{E_{\text{s}} }}} \ge 0.1\lambda \varphi_{c} \sqrt {f^{'}_{c} } bd\sqrt {\frac{{E_{{{\text{f}}l}} }}{{E_{\text{s}} }}} \)

\( V_{fv} = 0.4\rho_{fv} f_{fv} bd \le 0.8bd\sqrt {\frac{{f^{'}_{c} E_{fv} }}{{E_{\text{s}} }}} \)

Nehdi et al. [15]

Optimized equation: If a/d ≥ 2.5:

\( V_{c} = 2.1\left( {\frac{{f^{'}_{c} \rho_{{{\text{f}}l}} d}}{a}\frac{{E_{{{\text{f}}l}} }}{{E_{\text{s}} }}} \right)^{0.23} bd \)

If a/d < 2.5:

\( V_{c} = 2.1\left( {\frac{{f^{'}_{c} \rho_{\text{fl}} d}}{a}\frac{{E_{\text{fl}} }}{{E_{\text{s}} }}} \right)^{0.23} bd \times \frac{2.5d}{a} \)

\( \rho_{\text{fl}} = \frac{{A_{\text{fl}} }}{bd} \)

\( V_{\text{fv}} = 0.74\left( {\rho_{\text{fv}} f_{\text{fv}} } \right)^{0.51} bd \)

\( \rho_{\text{fv}} = \frac{{A_{\text{fv}} }}{bs} \)

Nehdi et al. [15]

Design equation: If a/d ≥ 2.5:

\( V_{c} = 2.1\left( {\frac{{f^{'}_{c} \rho_{\text{fl}} d}}{a}\frac{{E_{\text{fl}} }}{{E_{\text{s}} }}} \right)^{0.3} bd \)

If a/d < 2.5:\( V_{c} = 2.1\left( {\frac{{f^{'}_{c} \rho_{\text{fl}} d}}{a}\frac{{E_{{{\text{f}}l}} }}{{E_{\text{s}} }}} \right)^{0.3} bd \times \frac{2.5d}{a} \)

\( \rho_{{{\text{f}}l}} = \frac{{A_{{{\text{f}}l}} }}{bd} \)

\( V_{\text{fv}} = 0.5\left( {\rho_{\text{fv}} f_{\text{fv}} } \right)^{0.5} bd \)

\( \rho_{\text{fv}} = \frac{{A_{\text{fv}} }}{bs} \)

Hoult et al. [16]

\( V_{c} = \beta \sqrt {f^{'}_{c} } bd_{v} \)

\( \beta = \frac{0.30}{{0.5 + \left( {1000\varepsilon_{x}\, + \,0.15} \right)^{0.7} }} \times \frac{1300}{{1000\, + \,s_{\text{ze}} }} \)

\( d_{v} = 0.9d \)

\( s_{\text{xe}} = \frac{31.5d}{{16 + a_{g} }} \ge 0.77d \)

\( a_{g} = \left\{ {\begin{array}{*{20}c} {a_{g} , \quad {\text{if }}\, f^{'}_{c} < 60} \\ {a_{g} - \frac{{a_{g} }}{10} \times \left( {f^{'}_{c} - 60} \right),\quad {\text{if}}\, 60 \le f^{'}_{c} < 70} \\ {0,\quad {\text{if}}\, f^{'}_{c} > 70} \\ \end{array} } \right. \)

\( \varepsilon_{x} = \frac{{\left( {\left( {\frac{{M_{f} }}{{d_{v} }}} \right) + V_{f} } \right)}}{{2\left( {E_{\text{s}} A_{\text{s}} } \right)}} \)

 

Tureyen and Frosch [17]

Calculations are in English units.

\( V_{c} = \left( {\sqrt {16 + \frac{{4\sigma_{m} }}{{3\sqrt {f^{'}_{c} } }}} } \right)\sqrt {f^{'}_{c} } bc \)

\( c = kd \)

\( \sigma_{m} = \frac{{f_{\text{cr}} Ikd}}{{I_{\text{cr}} \left( \frac{h}{2} \right)}} \)

\( I_{\text{cr}} = b\left( \frac{kd}{3} \right)^{3} + n_{f} A_{f} \left( {d - kd} \right)^{2} \)

\( I = \frac{{h^{3} b}}{12} \)

\( f_{\text{cr}} = 0.6\lambda \sqrt {f^{'}_{c} } \)

\( k = \sqrt {2\rho_{\text{fl}} n_{f} + \left( {\rho_{{{\text{f}}l}} n_{f} } \right)^{2} } - \rho_{\text{fl}} n_{f} \)

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machial, R., Alam, M.S. & Rteil, A. Revisiting the shear design equations for concrete beams reinforced with FRP rebar and stirrup. Mater Struct 45, 1593–1612 (2012). https://doi.org/10.1617/s11527-012-9859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9859-5

Keywords

Navigation