Skip to main content
Log in

On the modeling of the dehydration induced transient creep during a heating–cooling cycle of concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A thermo-hydro-mechanical coupled model is presented here in order to simulate the transient creep strain of the load induced thermal strain of concrete during a heating–cooling cycle with a concomitant applied load. In this paper, the transient creep strain is split into a drying creep component and a dehydration creep strain. Further, a dehydration variable is introduced to describe chemical transformations due to the temperature increase. It also allows to govern the occurrence of the transient creep strain. Moreover, in this approach, we consider that the dehydration creep occurs with the same kinetics as the dehydration process. This model has been implemented in the finite element code CAST3M and numerical simulations are performed to assess the capability of the model to predict transient load induced thermal behavior of concrete in the case of a heating cooling cycle.

Résumé

Un modèle thermo-hydro-mécanique couplé est présenté ici afin de simuler la composante transitoire de la déformation thermique induite sous charge au cours d’un cycle de chauffage-refroidissement. Dans cet article, le fluage thermique transitoire est décomposé en fluage de dessiccation et une composante de fluage de déshydratation. En outre, une variable de déshydratation est introduite pour décrire les transformations chimiques en raison de l’augmentation de la température. Il permet aussi de régir l’apparition du fluage thermique transitoire. En outre, dans cette approche, on considère que le fluage de déshydratation se produit avec la même cinétique que le processus de déshydratation. Ce modèle a été implémenté dans le code éléments finis et des simulations numériques sont effectuées afin d’évaluer la capacité du modèle à prédire le comportement thermique transitoire du béton dans le cas d’un cycle de chauffage refroidissement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\( C_{\text{p}}^{i} \) :

Heat capacity of each constituents including the solid skeleton

c i :

Mass concentration of the constituent \( (i = v,a) \)

\( D_{\text{eff}} \) :

Effective diffusivity

\( d_{\text{tc}} \) :

Thermo-chemical damage variable

\( d_{\text{m}} \) :

Mechanical damage variable

\( d_{\rm m}^{\rm t} \) :

Mechanical damage in traction

\( d_{\rm m}^{\rm c} \) :

Mechanical damage in compression

\( E \) :

Young’s modulus

\( f_{\rm c} \) :

Compressive strength

\( f_{i} \) :

Temperature dependent strength (\( i = t \) in tension and \( i = c \) in compression)

\( F_{\rm t} \) :

Yield surface of Rankine’s criterion

\( F_{\rm c} \) :

Yield surface of Drucker-Prager’s criterion

G c :

Plastic potential in compression

G t :

Plastic potential in tension

\( \mathcal{H} \) :

Stands for the Heavide step function

\( \mathbb{H} \) :

Fourth order tensor of undamaged material stiffness

\( h_{\rm r} \) :

Relative humidity

\( I_{1} \) :

Effective stress first invariant

\( J_{2} \) :

Effective stress deviator second invariant

J P l :

Volume averaged permeation flux of: liquid water

\( {J}_{\text{g}}^{\text{P}} \) :

Volume averaged permeation flux of gas mixture

\( {J}_{i}^{\text{D}} \) :

Average flux of each of: diffusing species, water vapor \( (i = v) \) and dry air \( (i = a) \)

\( \kappa_{i} \) :

Cumulated plastic strains

\( K \) :

Intrinsic permeability of: corresponding fluid phase \( \left( {i = l,g} \right) \)

\( k_{\rm ri} \) :

Relative permeability of: corresponding fluid phase \( \left( {i = l,g} \right) \)

\( M_{i} \) :

Molar mass of: considered phase \( (i = v,a,g) \)

\( m_{i} \) :

Mass per unit volume of concrete of each fluid constituent \( (i = l,v,a) \)

\( \dot{m}_{\text{vap}} \) :

Rate of evaporation

\( \dot{m}_{\text{dehyd}} \) :

Rate of dehydration

\( m_{\text{eq}} \) :

Dehydration mass at equilibrium

\( p^{\text{vs}} \) :

Vapor pressure at saturation

\( p^{\text{c}} \) :

Capillary pressure

\( p^{i} \) :

Pressure of: considered phase \( (i = v,a,g) \)

\( \mathbb{Q} \) :

Fourth order tensor

\( {q} \) :

Heat flux

\( q^{\text{v}} \) :

Flux of vapor through the external boundaries

\( S^{\rm l} \) :

Degree of saturation for the pores with liquid water

\( V_{\text{sp}} \) :

Sample’s volume

v s :

Velocity of the solid phase

v is :

Velocity of the liquid water \( (i = l) \) and gas mixture \( (i = g) \) with respect to the solid phase

v ig :

Velocity of the vapor \( (i = v) \) and dry air \( (i = a) \)with respect to the gas mixture

\( T \) :

Absolute temperature

\( \alpha_{\text{dc}} \) :

Drying creep material parameter

\( \alpha_{\text{hc}} \) :

Dehydration creep material parameter

α th :

Thermal expansion coefficient

\( \beta_{\text{c}} \) :

Convective mass exchange coefficient

\( \gamma \) :

Transient creep Poison’s ratio

\( \delta \) :

Second order unit tensor

\( \Updelta H_{\text{vap}} \) :

Enthalpy of evaporation

\( \Updelta H_{\text{dehydr}} \) :

Enthalpy of dehydration

\( \varepsilon \) :

Total strain strain

\( \varepsilon_{\text{th}} \) :

Thermo-hygral component

\(\varepsilon_{\text{t}} \) :

Thermal expansion strain

\( \varepsilon_{\text{sh}} \) :

Shrinkage strain

\( \varepsilon_{\text{tm}} \) :

Load induced thermal strains

\( \varepsilon_{\text{e}} \) :

Elastic strain

\( \varepsilon_{\rm p} \) :

Plastic strain

\( \varepsilon_{\rm tc} \) :

Transient creep strain

\( \varepsilon_{\rm dc} \) :

Drying component strain

\( \lambda_{\rm eff} \) :

Effective thermal conductivity

\( \lambda_{\text{d}} \) :

Temperature dependence thermal conductivity of a dry material

\( \lambda_{{{\text{d}}0}} \) :

Thermal conductivity of a dry material at a reference temperature T 0

\( \lambda_{i} \) :

Plastic multiplier associated to each activated yield function \( F_{i} \) and \( G_{\rm c} \)

\( \mu_{i} \) :

Dynamic viscosity of : corresponding fluid phase \( \left( {i = l,g} \right) \)

\( \rho^{i} \) :

Corresponding density of each fluid constituent \( (i = l,v,a) \)

\( \rho C_{\rm p} \) :

Effective volumetric heat capacity of : porous medium

\( \rho^{i} \) :

Density of the considered phase \( (i = v,a,g) \)

\( \phi \) :

Porosity

\( \sigma \) :

Apparent stress tensor

\( \tilde{\sigma } \) :

Effective stress tensor

\( \tilde{\sigma }_{I} \) :

Major principal effective stress,

\( \tau_{\rm dehy} \) :

Dehydration relaxation time

\( \tilde{\tau }_{i} \) :

Effective yield stress (\( i = t \) in tension and \( i = c \) in compression)

\( \tau_{i} \) :

Nominal yield stress (\( i = t \) in tension and \( i = c \) in compression)

\( \chi_{i} \) :

Initial elastic threshold \( (\chi_{\text{t}} = 1,\chi_{\text{c}} = 3) \)

References

  1. Ulm F, Coussy O, Bazant Z (1999) The “chunnel” fire. 2: analysis of concrete damage. J Eng Mech 125(3):283–289

    Article  Google Scholar 

  2. Schrefler BA, Brunello P, Gawin D, Majorana C, Pesavento F (2002) Concrete at high temperature with application to tunnel fire. Comput Mech 29:43–51

    Article  MATH  Google Scholar 

  3. Kalifa P, Menneteau F, Quenard D et al (2000) Spalling and pore pressure in HPC at high temperatures. Cement Concrete Res 30:1915–1927

    Article  Google Scholar 

  4. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and con-solidation of porous media. Wiley & Sons, Chichester

    Google Scholar 

  5. Schneider U (1988) Concrete at high temperature: a general review. Fire Safety J 13:55–68

    Article  Google Scholar 

  6. Anderberg Y (1997) Spalling phenomena of HPC and OC. In: Phan LT, Carino NJ, Duthinh D, Garboczi E (eds) Proceedings of the international workshop of fire performance of high-strength concrete. NIST Spec. Publ. 919. National Institute of Standards and Technology, Gaithersburg, MD, pp 69–73

  7. Lin WM, Lin TD, Powers-Couche LJ (1996) Microstructure of fire damaged concrete. ACI Mater J 93(3):199–205

    Google Scholar 

  8. Hassanizadeh M, Gray WG (1979) General conservation equations for multiphase systems: 1 Averaging technique. Adv Water Resour 2:131–144

    Article  Google Scholar 

  9. Hassanizadeh M, Gray WG (1979) General conservation equations for multiphase sys-tems: 2 Mass, momenta, energy and entropy equations. Adv Water Resour 2:191–203

    Article  Google Scholar 

  10. Hassanizadeh M, Gray WG (1980) General conservation equations for multiphase sys-tems: 3 Constitutive theory for porous media. Adv Water Resour 3:25–40

    Article  Google Scholar 

  11. Khoury GA, Grainger BN, Sullivan PJE (1985) Transient thermal strain of concrete: literature review conditions within specimen and behaviour of individual constituents. Mag Concrete Res 37(132):131–144

    Article  Google Scholar 

  12. Sabeur H, Meftah F (2008) Dehydration creep of concrete at high temperatures. Mater Struct 41:17–30

    Google Scholar 

  13. Bear J (1988) Dynamics of fluids in porous media. Dover, New York

    MATH  Google Scholar 

  14. Bear J, Bachmat Y (1986) Macroscopic modelling of trans-port phenomena in porous media, 2: applications to mass momentum and energy transfer. Transp Porous Media 1:241–269

    Article  Google Scholar 

  15. Feraille A (2000) Le rôle de l’eau dans le comportement à haute température des bétons. Ph.D Thesis (in french), ENPC, France

  16. Gawin D, Majorana CE, Schrefler BA (1999) Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mech Cohes Frict Mater 4:37–74

    Article  Google Scholar 

  17. Gawin D, Pesavento F, Schrefler BA (2004) Modelling of deformations of high strength concrete at elevated temperatures. Mater Struct 37:218–236

    Google Scholar 

  18. Al Najim A (2004) Modelling and simulation of concrete behaviour subjected to high temperatures by a thermo-hydro-mechanical coupled approach. Application to accidental scenarios. Ph.D. Thesis, Université Marne La Vallée, France, p 172

  19. Kachanov LM (1986) Introduction to continum damage mechanics. Martinus Nijhoff Pub-lishers, Dordrecht, The Netherlands

    Google Scholar 

  20. Khoury GA, Sullivan PJE, Grainger BN (1985) Strain of concrete during first heating to 600°C under load. Mag Concrete Res 37(133):195–215

    Google Scholar 

  21. Anderberg Y (1976) Fire-exposed hyperstatic concrete structures—an experimental and theorical study. Div. of Struct. Mech. And Concrete Constr., Inst. Of Tech., Lund

  22. Sabeur H, Colina H (2006) Transient thermal creep of concrete in accidental conditions at temperatures up to 400°C. Mag Concrete Res 58(4):201–208

    Google Scholar 

  23. Nechnech W, Meftah F, Reynouard JM (2002) An elasto-plastic damage model for plain concrete at high temperatures. Eng Struct 24(5):597–611

    Article  Google Scholar 

  24. Bažant ZP, Chern JC (1985) Concrete creep at variable humidity: constitutive law and mechanism. Mater Struct 18:1–20

    Article  Google Scholar 

  25. Benboudjema F, Meftah F, Torrenti JM (2005) Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct 27:239–250

    Article  Google Scholar 

  26. Anderberg Y, Thelanderson S (1973) Stress and deformation characteristics of concrete at high temperature. Lund Institute of Technology (Sweden): Division of Structural Me-chanics and Concrete Construction, Internal Report, No Alba15/04-01

  27. Sabeur H, Colina H, Bejjani M (2007) Elastic strain, Young’s modulus variation during uniform heating of concrete. Mag Concrete Res 59(8):559–566

    Article  Google Scholar 

  28. Sabeur H, Meftah F, Colina H, Plateret G (2008) Correlation between transient creep of concrete and its dehydration, Mag Concrete Res 60(3)157–163

    Google Scholar 

  29. Pasquero D (2004) Contribution à l’étude de la déshydratation dans les pâtes de ciment soumises à haute température, Thèse de doctorat. ENPC, Paris, France

    Google Scholar 

  30. Hager I (2004) Comportement à haute température des bétons à haute performance: évolution des principales propriétés mécaniques. Ph.D Thesis, ENPC, France (In French)

  31. Harmathy TZ, Allen LW (1973) Thermal properties of selected masonry unit concretes. J Am Concrete Inst 70(2): 132–142

    Google Scholar 

  32. Raznjevic K (1970) Tables et diagrammes thermodynamiques. Editions Eyrolles

  33. Gawin D, Majorana CE, Pesavento F, Schrefler BA (2001) Modelling thermo-mechanical behaviour of high performance concrete in high temperature environments. In: de Borst R et al (eds) Fracture mechanics of concrete structures, pp 199–206, Cachan (Proc 4th Int Conf “Fracture mechanics of concrete and concrete structures - FraMCoS-4”, Cachan, 2001)

  34. Couture F, Jomaa W, Puiggali J-R (1996) Relative permeability relations: a key factor for a drying model. Transp Porous Media 23:303–335

    Article  Google Scholar 

  35. Nasrallah SB, Perre P (1988) Detailed study of a model of heat and mass transfer during convective drying of porous media. Int J Heat Mass Transfer 31(5):957–967

    Article  MATH  Google Scholar 

  36. Adenekan AE, Patzek T, Pruess K (1993) Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: numerical model formulation. Water Resour Res 29(11):3727–3740

    Article  Google Scholar 

  37. Sleep BE, Sykes JF (1993) Compositional simulation of groundwater contamination by organic compounds, 1. Model development and verification. Water Resour Res 29(6):1697–1708

    Article  Google Scholar 

  38. Daian JF (1989) Condensation and isothermal water transfer in cement mortar, Part II—transient condensation of water vapour. Transp Porous Media 44:1–16

    Google Scholar 

  39. Forsyth PA, Simpson RB et al (1991) A two-phase two-component model for natural convection in a porous medium. Int J Numer Meth Fluids 12:655–682

    Article  MATH  Google Scholar 

  40. Mason EA, Monchik L (1965) Survey of the equation of state and transport properties of moist gases. Humidity Moisture Measurement Control Sci 3:257–272

    Google Scholar 

  41. Shekarchi M, Debicki G, Granger L, Billard Y (2002) Study of leaktightness integrity of containment wall without liner in high performance concrete under accidental conditions—I. Experimentation. Nucl Eng Des 213:1–9

    Google Scholar 

  42. Ju JW, Zhang Y (1998) Axisymmetric thermomechanical constitutive and damage modeling for air field concrete pavement under transient high temperature. Mech Mater 29:307–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeur Hassen.

Appendices

Appendix

1.1 Porosity

The changes of porosity with the increase of temperature were measured for several types of concrete by [16]. Their results showed that the dependence of porosity on temperature can be approximated for concrete by a linear relationship:

$$ \phi = \phi_{0} + A_{\phi } \left( {T - T_{0} } \right) $$

where \( A_{\phi } \) is a constant dependent on the type of concrete. For the experimental data for three types of concrete, the following coefficients of equation have been found by using the least-squares method [16]:

 

 

Silicate concrete

Limestone concrete

Basalt concrete

\( \phi_{0} \)

0.06

0.087

0.0802

\( A_{\phi } \) (K−1)

0.000195

0.000163

0.00017

Heat capacity

A temperature dependence of the volumetric heat capacity for the solid skeleton may be approximated by a linear relationship [31]:

$$ \left( {1 - \phi } \right)\rho^{\rm s} C_{\rm ps} = \left( {1 - \phi_{0} } \right)\rho_{0}^{\rm s} C_{\rm ps0} \left[ {1 + A_{\rm c} \left( {T - T_{0} } \right)} \right] $$

where \( \left( {1 - \phi_{0} } \right)\rho_{0}^{\rm s} C_{\rm ps0} \) is the volumetric heat capacity of the solid skeleton at the reference temperature T 0, and A c is a coefficient which takes the effect of temperature on the dry volumetric heat capacity.

The thermal capacity for the constituents gaseous in the case of perfect gas, at constant pressure, would be taken independent of temperature changes for both air and vapour heat capacity \( C_{\rm pa} = 1003.5 \) and \( C_{\rm pv} = 1880.0 \) [15]. Based on the results for the thermal capacity of the liquid water given by [32], an approximated formula has been given by [15] as follows:

$$ C_{\rm pl} = 4180 + 300 \cdot \left( {{\frac{T - 273}{T - 715}}} \right)^{2} $$

2.1 Permeability

Gawin et al. [33] proposed the following relationship to describe the compound effect of temperature, gas pressure and material damaging (crack development) on the intrinsic permeability:

$$ K\left( {T,\,\,p,\,\,\phi_{\rm M} } \right) = K_{0} \cdot 10^{{A_{\rm T} \cdot \left( {T - T_{0} } \right)}} \cdot \left( {{\frac{{p^{\rm g} }}{{p_{0}^{\rm g} }}}} \right)^{{A_{\rm p} }} \cdot 10^{{A_{\rm d} \cdot \phi_{\rm M} }} $$

where \( K_{0} \) is the initial intrinsic permeability, T 0 is the ambient temperature, \( p_{0}^{\rm g} \) is the atmospheric pressure \( A_{\rm T} \), \( A_{\rm p} \) are material constants, \( A_{{\phi_{\rm M} }} \) is a parameter associated to the damage variable \( \phi_{\rm M} \).

Concerning the relative permeability of fluids the following relationship [16] is proposed.

$$ k_{\rm rl} = \left[ {1 + \left( {{\frac{1 - RH}{0.25}}} \right)^{{B_{\rm l} }} } \right]^{ - 1} \,\,\cdot \,\,S^{{A_{\rm l} }} $$

where \( A_{\rm l} \), \( B_{\rm l} \) are constant with value from the range <1, 3>.

The gas relative permeability of concrete it can be described by the formula given by [34, 35] \( k_{\rm rg} = 1 - \left( {{\frac{S}{{S_{\rm cr} }}}} \right)^{{A_{\rm g} }} \quad {\rm for} \quad S < S_{\rm cr} \)where S cr is the critical saturation value, above which there is no gas flow in the medium, A g is a constant, which usually has value from the range <1, 3>.

Diffusivity

The effective diffusivity is given by the following expression [18]:

$$ D_{\rm eff} \left( {S^{\rm l} } \right) = f_{\rm s} \left( {\phi ,\,\,S^{\rm l} } \right)D_{\rm va} \left( {T,\,\,p^{\rm g} } \right) $$

where the structure factor f s is given [36, 37]

$$ f_{\rm s} \left( {\phi ,\,\,S^{\rm l} } \right) = \phi_{\rm g}^{4/3} \left( {1 - S^{\rm l} } \right)^{2} = \phi^{4/3} \left( {1 - S^{\rm l} } \right)^{10/3} $$

The diffusivity of vapour in the air at temperature T and pressure p g is given in [38]

$$ D_{\rm va} \left( {T,\,p^{\rm g} } \right) = D_{\rm v0} \left( {{\frac{T}{{T_{0} }}}} \right)^{{A_{\rm v} }} {\frac{{p_{0}^{\rm g} }}{{p^{\rm g} }}} $$

where D v0 = 2.58 × 10−5 [m2 s−1] is the diffusion coefficient of vapour species in the air at the reference temperature T 0 = 273,15 [K] and pressure \( p_{0}^{\rm g} \) = 101325 [Pa] [39]. A v is a constant, which for the value A v  = 1.667 gives good correlation with the experimental data concerning vapour diffusion at different temperature [40].

The saturation vapour pressure

The saturation vapour pressure \(p^{\rm {vs}} \left(T \right)\), which depends only upon temperature, could be obtained from the empirical correlation. Tabulated results [32] which link the water vapour saturation pressure \( p^{\rm vs} \) with temperature T could be approximated by the following formula [41]:

$$ p^{\rm vs} \left( T \right) = \exp \left( {6.4075 + {\frac{16.82669\,T}{228.73733 + T}}} \right) $$

It should be noted that this equation is taken until the critical point of water 647.15 [K] after which it is not possible to distinguish between the liquid and vapour.

Another equation can be taken for \( p^{\rm vs} \) after the critical temperatures following the L-function given in [42]:

$$ p^{\rm vs} \left( T \right) = p^{\rm vs} (647.15)\left[ {L_{0} + L_{1} {\frac{T}{647.15}} + L_{2} \left( {{\frac{T}{647.15}}} \right)^{2} } \right] $$

where L 0 = 15.8568, L 1  = −34.1706 and L 2  = 15.7437.

  • values of different parameters in Eqs. 1214

\( \lambda_{\text{d0}} \)

1.39 [W/(m K)]

\( A_{\lambda } \)

0.0006 [K−1]

\( \phi \)

0.1 [−]

\( \rho_{{}}^{\rm s} \)

2590 [kg/m3]

\( \rho^{l} \)

999.84 [kg/m3]

T 0

293.15 [K]

$$ A = 0.44\quad {\text{B = 18.6}} \cdot 1 0^{ 6} \quad (18) $$
$$ \beta_{\rm c} = 0.018\left[ {m/s} \right]\quad (49) $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassen, S. On the modeling of the dehydration induced transient creep during a heating–cooling cycle of concrete. Mater Struct 44, 1609–1627 (2011). https://doi.org/10.1617/s11527-011-9722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9722-0

Keywords

Navigation