Skip to main content
Log in

Compressive behaviour of a new reinforced masonry system

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents the behaviour in compression of an innovative reinforced masonry system. The system is made of horizontally perforated units, having common steel bars or prefabricated trusses as horizontal reinforcement. At the wall edges or crossings, confining columns for vertical reinforcement are built with vertically perforated units. Experimental tests, aimed at obtaining basic mechanical characterisation of the construction system, were performed on single constitutive elements i.e., confining columns and masonry panels made of horizontally perforated units, and on completed reinforced masonry walls. Non-linear numerical models, interpreting stress and strain distributions, were developed on the basis of the results. In particular, this paper presents: (a) results of compression tests on columns, masonry panels, and complete reinforced masonry system; (b) comparison of walls built with two types of horizontal reinforcement; (c) outcome of numerical models; and (d) effectiveness of various design equations to evaluate the compressive strength of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A, B, K:

Parameters (−)

a, b, c, m, s, t:

Parameters (−)

E:

Elastic modulus (N/mm2)

Eb :

Elastic modulus of unit orthogonal to the bed face (N/mm2)

Ebh :

Elastic modulus of unit parallel to the bed face in the wall plane (N/mm2)

Em :

Elastic modulus of mortar (N/mm2)

f:

Compressive strength (N/mm2)

fb :

Normalized compressive strength of unit orthogonal to the bed face (N/mm2)

fbh :

Normalized compressive strength of unit parallel to the bed face (N/mm2)

fbm :

Mean compressive strength of unit orthogonal to the bed face (N/mm2)

fbhm :

Mean compressive strength of unit parallel to the bed face (N/mm2)

fbt :

Biaxial tensile strength of unit (N/mm2)

fc :

Uniaxial compressive strength (N/mm2)

fc,w :

Compressive strength according to Eq. 1 (N/mm2)

fk :

Characteristic compressive strength of masonry (N/mm2)

fm :

Mean compressive strength of mortar (N/mm2)

fmt :

Mean flexural strength of mortar (N/mm2)

fmu :

Uniaxial compressive strength of mortar (N/mm2)

ft :

Tensile strength (N/mm2)

fy :

Mean yielding stress of reinforcement (N/mm2)

fu :

Mean tensile strength of reinforcement (N/mm2)

Gfc :

Fracture energy in compression (N/mm)

Gft :

Fracture energy in tension (N/mm)

h:

Height of wall (mm)

hm :

Height of mortar joint (mm)

hu :

Height of unit (mm)

t:

Thickness of wall (mm)

Uu :

Non-uniformity coefficient (−)

α, β:

Parameters (−)

ν:

Poisson’s ratio (−)

νb :

Poisson’s ratio of unit orthogonal to the bed face (−)

νbh :

Poisson’s ratio of unit parallel to the bed face in the wall plane (−)

νm :

Poisson’s ratio of mortar (−)

References

  1. American Society for Testing and Materials (1997) ASTM C1388-97. Standard Test Method for Compressive Strength of Laboratory Constructed Masonry Prisms (Withdrawn 1999). West Conshohocken, PA, USA

  2. Atkinson RH, Noland JL (1983) A proposed failure theory for brick masonry in compression. In: Proceedings of the 3rd Canadian masonry symposium, Edmonton, Alberta, June 1983, pp 5.1–5.17

  3. Bennett RM, Boyd KA, Flanagan RD (1997) Compressive properties of structural clay tile prisms. ASCE J Struct Eng 123(7):920–926

    Article  Google Scholar 

  4. Binda L, Pina-Henriques J, Anzani A, Fontana A, Lourenço PB (2006) A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling. Eng Struct 28(8):1132–1148. doi:10.1016/j.engstruct.2005.12.004

    Article  Google Scholar 

  5. Biolzi L (1988) Evaluation of compressive strength of masonry walls by limit analysis. ASCE J Struct Eng 114(10):2179–2189

    Article  Google Scholar 

  6. Colangelo F (2004) Stima della resistenza a compressione delle tamponature. Costr Laterizio 16(97):62–67 (in Italian)

    Google Scholar 

  7. da Porto F (2005) In-plane cyclic behaviour of thin layer joint masonry. PhD thesis. University of Trento, Trento, Italy

  8. da Porto F, Guidi G, Garbin E, Modena C (2008) Modelling of in-plane loaded clay unit masonry walls, In: Proceedings of the 14th international brick and block masonry conference, Sydney, Australia, February 17–20, 2008 (CD-ROM)

  9. da Porto F, Mosele F, Modena C (2009) Reinforced clay masonry walls under shear-compression loads: experimental behaviour. In: Proceedings of the 11th Canadian masonry symposium, Toronto, Canada, 31 May–3 June 2009 (CD ROM)

  10. da Porto F, Guidi G, Garbin E, Modena C (2010) In-plane behavior of clay masonry walls: experimental testing and finite element modelling. ASCE J Struct Eng, doi:10.1061/(ASCE)ST.1943-541X.0000236

  11. Dayaratnam P (1987) Brick and reinforced brick structures. Oxford and IBH, New Delhi

    Google Scholar 

  12. DISWall, 2006-2008, COOP-CT-2005-18120. Developing innovative systems for reinforced masonry walls. Scientific coordinator: C. Modena. University of Padova; 2008. http://diswall.dic.unipd.it/

  13. Drobiec L, Kubica J (2002) Influence of some types of bed joint reinforcement on mechanical properties of masonry under compression. In: Proceedings of the 6th international masonry conference, London, 4–6 November 2002, pp 99–104

  14. Duarte RB (2003) The structural performance of horizontally perforated bricks. Mason Int 16(1):31–33

    Google Scholar 

  15. Egermann R, Frick B, Neuwald C (1993) Analytical and experimental approach to the load bearing behaviour of multiple leaf masonry. Trans Built Environ Struct Repair Maint Hist Build III 4:383–390

    Google Scholar 

  16. European Committee for Standardization (2004) EN 1992-1-1:2004. Eurocode 2—design of concrete structures—part 1-1: general rules and rules for buildings, Brussels, Belgium

  17. European Committee for Standardization (2004) EN 1998-1:2004. Eurocode 8—design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium

  18. European Committee for Standardization (2005) EN 1996-1-1:2005. Eurocode 6—design of masonry structures. Part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels, Belgium

  19. European Committee for Standardization (1998) EN 1052-1:1998. Methods of tests for masonry—determination of compressive strength. European Committee for Standardization, Brussels, Belgium

  20. Guidi G (1954) Confronto tra resistenze fra murature in mattoni pieni e semipieni con vari tipi di malta. L’ind Ital Laterizi 4(1):1954 (in Italian)

    Google Scholar 

  21. Guidi G (2006) Sistemi di muratura portante in laterizio: calibrazione di modelli numerici sulla base di risultati sperimentali. MSc Thesis, University of Padova, Padova, Italy (in Italian)

  22. Hendry AW (1990) Structural masonry. MacMillan Education, London

    Google Scholar 

  23. Hilsdorf HK (1969) Investigation into the failure mechanism of brick masonry loaded in axial compression. In: Proceedings of the international conference on masonry structural systems, Texas, pp 34–41

  24. Kaushik HB, Rai DC, Jain SK (2007) Stress-strain characteristics of clay brick masonry under uniaxial compression. ASCE J Mater Civil Eng 19(9):728–739. doi:10.1061/(ASCE)0899-1561(2007)19:9(728)

    Article  Google Scholar 

  25. Khoo CL, Hendry AW (1973) A failure criterion for brickwork in axial compression. In: Proceedings of the third international masonry conference, Essen, pp 139–145

  26. Laner F (1974) Resistenza di base delle murature di laterizio: considerazioni su un ciclo di prove. L’ind Ital Laterizi 24(2):55–61 (in Italian)

    Google Scholar 

  27. Ministry of Infrastructures (2008) Technical Standards for Constructions. DM 14/01/08, Rome, Italy (in Italian)

  28. Mosele F (2005) Comportamento meccanico della muratura: sperimentazione e modellazione. MSc Thesis, University of Padova, Padova, Italy (in Italian)

  29. Mosele F (2009) In-plane and out-of-plane cyclic behaviour of reinforced masonry walls. PhD Thesis, University of Trento, Trento, Italy

  30. Mosele F, da Porto F, Modena C (2009) Reinforced clay masonry walls: effectiveness of reinforcement and shear equations. In: Proceedings of the 11th Canadian masonry symposium, Toronto, Canada, 31 May–3 June 2009 (CD ROM)

  31. Öhler H (1986) Zur berechnung der druckfestigkeit von mauerwerk unter berücksichtigung der mehrachsigen spannungszustände in stein und mörtel. Bautechnik 63(5):163–169 (in German)

    Google Scholar 

  32. Rossi G (1982) Resistenza a compressione delle murature in laterizio: proposta di una formula su basi sperimentali valida anche per elementi a “foratura non uniforme” e/o giunti di malta interrotti. In: Proceedings of the 6th international brick masonry conference, Rome ANDIL, pp 364–375 (in Italian)

  33. Rots JG (1997) Structural masonry. An experimental/numerical basis for practical design rules. Balkema, Rotterdam

    Google Scholar 

  34. Tassios TP (1988) Meccanica delle muratura. Liguori, Napoli (in Italian)

    Google Scholar 

  35. Tena-Colunga A, Juárez-Ángeles A, Salinas-Vallejo VH (2009) Cyclic behaviour of combined and confined masonry walls. Eng Struct 31(1):240–259. doi:10.1016/j.engstruct.2008.08.015

    Article  Google Scholar 

  36. The Masonry Standards Joint Committee (2005) Building code requirement for masonry structures. ACI530/ASCE5/TMS402. American Society of Civil Engineers and The Masonry Society, Detroit, New York and Boulder

  37. Tomaževič M (1999) Earthquake-resistant design of masonry buildings. Imperial College Press, London

    Google Scholar 

  38. Tomaževič M, Lutman M, Bosiljkov V (2006) Robustness of hollow clay masonry units and seismic behaviour of masonry walls. Construct Build Mater 20(10):1028–1039. doi:10.1016/j.conbuildmat.2005.05.001

    Article  Google Scholar 

  39. Valluzzi MR, da Porto F, Modena C (2004) Behavior and modeling of strengthened three-leaf stone masonry walls. Mater Struct 37(267):184–192. doi:10.1007/BF02481618

    Article  Google Scholar 

  40. Vintzileou E (1999) Improvement of ductility characteristics of plain masonry by means of local horizontal reinforcement. Mason Int 13(1):27–31

    Google Scholar 

  41. Vintzileou E, Tassios TP (1995) Three-leaf stone masonry strengthened by injecting cement grouts. ASCE J Struct Eng 121(5):848–856

    Article  Google Scholar 

  42. Zarri F (1994) Parametri di resistenza e di deformabilità meccanica di murature di laterizio. Costruire in Laterizio 7(41):452–455 (in Italian)

    Google Scholar 

Download references

Acknowledgements

This work was carried out under EU Contract COOP-CT-2005-018120: ‘Developing Innovative Systems for Reinforced Masonry Walls—DISWall’ and a University of Padova Grant CPDA085943. The unit and mortar manufacturers, Laterizi Alan Metauro s.r.l. and Tassullo S.p.A. (Italy), and the reinforcing truss producer, Bekaert SA/NV (Belgium), were partners in the EU project. The authors are grateful to M. Dalle Rive for her contribution to experimental tests during her MSc thesis, to G. Guidi for numerical modelling, and to M. Dalla Benetta for supervising experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca da Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Porto, F., Mosele, F. & Modena, C. Compressive behaviour of a new reinforced masonry system. Mater Struct 44, 565–581 (2011). https://doi.org/10.1617/s11527-010-9649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9649-x

Keywords

Navigation