Skip to main content
Log in

Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The paper reports on the performance of a series of sewer pipe concrete mixtures and cementitious lining mixtures in acid environments. Binder types based on ordinary portland cement (OPC) and calcium aluminate cement (CAC) were used, with both acid-soluble and acid-insoluble aggregates and various supplementary cementitious materials (SCM). One series of tests subjected the mixtures to pure mineral acid (hydrochloric acid, pH = 1), using a specially designed dynamic test rig. The other series of tests involved monitoring specimens placed in a live sewer under very aggressive conditions induced by acid-generating bacteria. Under mineral acid attack on concretes with conventional dolomite aggregates, OPC/silica fume concretes displayed best performance, attributed to their densified microstructure coupled with substantially improved ITZ. CAC concretes with dolomite aggregate did not perform any better than similar OPC specimens under these conditions, primarily because of their higher porosity. However, with concretes using synthetic alagTM aggregates in mineral acid testing, CAC/alagTM mixtures performed exceptionally well due to their homogeneous microstructure, inferred absence of an ITZ, and slower dissolution and finer size of alagTM aggregate particles. The dynamic acid test was able to reveal differences in physical and chemical interactions between constituents in concrete mixes. Under biogenic acid conditions in the sewer, CAC concretes clearly outperformed OPC concretes. This is ascribed to the ability of CAC to stifle the metabolism of the acid-generating bacteria, thereby reducing acid generation. Thus the effects of neutralisation capacity and stifling of bacterial activity need to be distinguished in designing concrete mixtures to provide good acid resistance. Relative rates of dissolution of binder and aggregates are also important in overall performance, with uniform rates preferable in order to avoid aggregate fallout.

Résumé

Cet article présente des séries d’essais visant à évaluer la résistance à la corrosion acide de différents bétons et mortiers de protection utilisés pour les tuyaux d’assainissement. Les types de liant sont du Ciment Portland (OPC) et du ciment d’aluminate de calcium (CAC), combinés à des granulats soit solubles dans l’acide soit insolubles, avec ou sans ajouts minéraux (SCM). Dans une première série de tests, les bétons sont soumis à un acide minéral pur (acide chlorydrique, pH = 1) à l’aide d’un montage dynamique spécialement conçu pour ce programme. Une deuxième série d’essais consiste à suivre des éprouvettes exposées dans un réseau d’égout en service, dans des conditions très sévères de corrosion biogénique induites par les bactéries produisant de l’acide. Soumises à la corrosion par l’acide minéral, les éprouvettes de béton OPC/fumée de silice avec des granulats dolomitiques ont montré la meilleure performance, probablement en raison d’une microstructure plus dense et d’une auréole de transition (ITZ) nettement améliorée. Les bétons de CAC avec granulats dolomitiques n’ont pas présenté une meilleure performance par rapport aux bétons de Portland dans cet essai, probablement en raison d’une plus grande porosité. A l’inverse, les bétons de CAC/granulats ALAGTM ont exceptionnellement bien résisté au test à l’acide minéral, en raison à l’homogénéité de la microstructure, de l’absence d’auréole de transition, d’une dissolution plus lente et de la taille réduite des particules de granulats ALAGTM. Le test dynamique de résistance à la corrosion acide a permis de mettre en évidence les différences dans les interactions physiques et chimiques entre les constituants des bétons. Dans les conditions de corrosion acide d’origine biogénique en réseau d’assainissement, les bétons de CAC ont clairement mieux tenu que les bétons d’OPC. Cela est attribué à la capacité des CAC de freiner le métabolisme des bactéries produisant de l’acide, réduisant ainsi la production d’acide. En conséquence, les paramètres de capacité de neutralisation et de réduction de l’activité biologique doivent être distingués dans la conception d’une formule de bétons pour obtenir une bonne résistance à la corrosion acide. Les taux relatifs de dissolution du liant et des granulats sont aussi importants dans la performance globale, des taux similaires étant préférable pour éviter le déchaussement des granulats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. Dolo3 derived from Olifantsfontein quarry.

  2. Alag™ aggregates are synthetic coarse and fine aggregates, manufactured from CAC clinker.

  3. The prediction model used was the so-called life factor method (LFM), based on hydrogen sulphide generation and release, and acid solubility of pipe material [10].

References

  1. Alexander MG, Ballim Y, Mackechnie JR (1999) Concrete durability testing manual. Research Monograph No 4, Department of Civil Engineering, University of Cape Town, 33 pp

  2. Alexander MG, Mackechnie JR, Ballim Y (2001) Use of durability indexes to achieve durable cover concrete in reinforced concrete structures. In: Skalny JP, Mindess S (eds) Materials science of concrete, vol VI. American Ceramic Society, Westerville, pp 483–511

    Google Scholar 

  3. Alexander MG, Goyns A, Fourie CW (2008) Experiences with a full-scale experimental sewer made with CAC and other cementitious binders in Virginia, South Africa. In: Proceedings, calcium aluminate cements, the centenary conference. IHS BRE Press, Bracknell, pp 279–292

  4. Ballim Y (1993) Curing and durability of OPC, fly ash and blast furnace slag concretes. Mater Struct 26:238–244

    Article  Google Scholar 

  5. Bibb M, Hartmann KW (1984) Bacterial corrosion. Corros Coat S Afr 29:12–19

    Google Scholar 

  6. De Belie N, Monteny J, Taerwe L (2002) Apparatus for accelerated degradation testing of concrete specimens. Mater Struct 35(251):427–433

    Article  Google Scholar 

  7. Ebbing DD (1984) General chemistry. Houghton Mifflin Company, Boston

    Google Scholar 

  8. Fourie CW (2007) Acid resistance of sewer pipe concrete. MSc dissertation, University of Cape Town

  9. Fourie CW, Alexander MG (2009) Acid resistant concrete sewer pipes. In: Proceedings, international RILEM TC-211 PAE final conference, Toulouse, June 2009. RILEM Publications S.A.R.L., Bagneux, pp 408–418

  10. Goyns A, Alexander, MG, Fourie CW (2008) Applying experimental data to concrete sewer design and rehabilitation. In: Proceedings, calcium aluminate cements, the centenary conference. IHS BRE Press, Bracknell, pp 293–308

  11. Kelly MJ, Krüger JP (1996) Consolidated report on phase 1 of sewer corrosion research: the Virginia Sewer experiment and related research. Division of Building Technology, South African Council of Scientific and Industrial Research, Pretoria

  12. Krüger JE (1989) First interim report on sewer corrosion research—Virginia Sewer. Division of Building Technology, South African Council of Scientific and Industrial Research, Pretoria

  13. Krüger JE (1990) Virginia sewer report, second progress report of sewer corrosion research. Division of Building Technology, South African Council of Scientific and Industrial Research, Pretoria

  14. Krüger JE (1991) Virginia sewer third corrosion report. Division of Building Technology, South African Council of Scientific and Industrial Research, Pretoria

  15. Lamberet S, Guinot D, Lempereur E, Talley J, Alt C (2008) Field investigations of high performance calcium aluminate mortar for wastewater applications. In: Proceedings, calcium aluminate cements, the centenary conference. IHS BRE Press, Bracknell, pp 269–278

  16. Lea FM (1970) The chemistry of cement and concrete. Edward Arnold Ltd, London

    Google Scholar 

  17. Meyer AH, Ledbetter WB (1970) Sulphuric acid attack on concrete sewer pipes. J ASCE (San Div) 1167–1182

  18. Pavlik V (1994) Corrosion of hardened cement paste by acetic and nitric acids. Part I: calculation of corrosion depth. Corros Concr Res 24:551–566

    Article  Google Scholar 

  19. Rombèn L (1979) CBI Forrskning research. Swedish Cement and Concrete Res, Stockholm. Inst. at the Institute of Technology 1(9):78–79

  20. SANS 6242 (2002). Acid insolubility of aggregates. South African Bureau of Standards, Pretoria

  21. Saucier F, Lamberet S (2009) Calcium aluminate concrete for sewers: going from qualitative to quantitative evidence of performance. In: Proceedings of the international RILEM TC-211 PAE final conference, Toulouse, June 2009. RILEM Publications S.A.R.L., Bagneux, pp 398–407

  22. Stanier RY, Doudoroff M, Adelberg EA (1971) General microbiology. Macmillan Student Editions, London

    Google Scholar 

  23. Thistlethwayte DKB (1972) The control of sulphides in sewage systems. Butterworth Pty. Ltd, Melbourne

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge with gratitude the valuable contributions of Mr Alaster Goyns to the work reported in this paper. These contributions comprised practical work on the sewer, and many helpful insights and ideas which he has discussed with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Alexander.

Appendix: Relevant properties of binders and aggregates

Appendix: Relevant properties of binders and aggregates

See Tables 5 and 6.

Table 5 Chemical compositions and fineness of cementitious materials
Table 6 Properties of aggregates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, M.G., Fourie, C. Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater Struct 44, 313–330 (2011). https://doi.org/10.1617/s11527-010-9629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9629-1

Keywords

Navigation