Skip to main content
Log in

Stress block parameters for concrete flexural members reinforced with superelastic shape memory alloys

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The unique properties of superelastic shape memory alloys (SMAs) have motivated researchers to explore their use as reinforcing bars. The capacity of a steel reinforced concrete (RC) section is calculated by assuming a maximum concrete strain ε c-max and utilizing stress block parameters, α 1 and β 1, to simplify the non-linear stress–strain curve of concrete. Recommended values for ε c-max, α 1, and β 1 are given in different design standards. However, these values are expected to be different for SMA RC sections. In this paper, the suitability of using sectional analysis to evaluate the monotonic moment–curvature relationship for SMA RC sections is investigated. A parametric study is then conducted to identify the characteristics of this relationship for steel and SMA RC sections. Specific mechanical properties are assumed for both steel and SMA. Results were used to evaluate ε c-max, α 1, and β 1 values given in the Canadian standards and to propose equations to estimate their recommended values for steel and SMA RC sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( \overline{Y} \) :

Distance between point of action of the concrete compressive force and the extreme compression fibre of the concrete section

\( A_{\text{s}}^{\prime} \) :

Compressive reinforcement area

A g :

Gross area of concrete section

ALI:

Axial load index which represents the ratio between the applied axial load to the axial capacity of the cross-section

A s :

Tensile reinforcement area

b :

Cross-section width

C :

Compression zone height

C c :

Compressive force in concrete

cc:

Point at which concrete reaches its crushing strain

E cr-SMA :

SMA modulus of elasticity before the start of martensite variant reorientation (austenite phase)

E p1 :

SMA modulus of elasticity before the start of the stress induced martensite phase

E p2 :

SMA modulus of elasticity after the start of the stress induced martensite phase (martensite phase)

E u-s :

Steel plastic modulus of elasticity

E u-SMA :

SMA post-yielding modulus of elasticity

E y-s :

Steel elastic modulus of elasticity

\( f_{\text{c}}^{\prime} \) :

Concrete compressive strength

f c :

Concrete compressive stress

f cr-SMA :

SMA critical stress (start of martensite variant reorientation)

f p1 :

Martensite stress induced stress

f s :

Steel stress

f u-s :

Steel ultimate stress

f u-SMA :

SMA ultimate stress

f y-s :

Steel yielding stress

f y-SMA :

SMA yielding stress

h :

Cross-section height

H :

Point at which strain in the SMA bars exceeds ε p1

M :

Moment

M code :

Moment obtained using A23.3 recommended values (Eq. 1)

M f :

The failure moment

M r :

Moment obtained using the proposed equations for α 1 and β 1

M u :

Ultimate moment

M y :

Yielding moment

NSC:

Normal strength concrete

P :

Axial load

R :

Coefficient of determination

r :

Point at which rupture of reinforcing bars occurs

T s :

Tensile force in the reinforcing bars

y :

Point at which bars reach f y-s for steel or for f cr-SMA SMA

Z :

Slope of compressive strain softening branch

α 1, β 1 :

Stress block parameters

ε c :

Concrete compressive strain

ε c-max :

Concrete maximum strain corresponding to the peak moment

ε cr-SMA :

SMA critical strain

ε cu :

Ultimate concrete compressive strain

ε end :

End part of the bar strain

ε mid :

Middle part of the bar strain

ε p1 :

Martensite stress induced strain

ε SMA :

SMA strain

ε SMA-avg :

SMA average bar strain

ε top :

Concrete top compressive strain

ε u-s :

Steel strain at failure

ε u-SMA :

SMA strain at failure

ε y-s :

Steel yielding strain

ε y-SMA :

SMA yielding strain

ρ :

Tensile reinforcement ratios

ρ′:

Compressive reinforcement ratios

Φ:

Curvature

Φcr-SMA :

Curvature corresponding to the SMA critical stress

Φmax :

Curvature corresponding to the peak moment

Φu :

Ultimate curvature

Φy-s :

Curvature corresponding to the steel yielding stress

References

  1. Wilson JC, Wesolowsky MJ (2005) Shape memory alloys for seismic response modification: A state-of-the-art review. Earthq Spectra 21:569–601. doi:10.1193/1.1897384

    Article  Google Scholar 

  2. DesRoches R, Smith B (2004) Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. J Earthq Eng 8:415–429. doi:10.1142/S1363246904001298

    Article  Google Scholar 

  3. Song G, Ma N, Li H-N (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266–1274. doi:10.1016/j.engstruct.2005.12.010

    Article  Google Scholar 

  4. Alam MS, Youssef MA, Nehdi M (2007) Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Can J Civ Eng 34(9):1075–1086. doi:10.1139/L07-038

    Article  Google Scholar 

  5. Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures—overview, limits, and new ideas. Mater Struct 38(5):578–592. doi:10.1007/BF02479550

    Article  Google Scholar 

  6. Li H, Liu Z, Ou J (2007) Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates. Smart Mater Struct 16(6):2550–2559. doi:10.1088/0964-1726/16/6/059

    Article  Google Scholar 

  7. Li H, Liu Z, Ou J (2006) Behavior of a simple concrete beam driven by shape memory alloy wires. Smart Mater Struct 15:1039–1046. doi:10.1088/0964-1726/15/4/017

    Article  Google Scholar 

  8. Li H, Liu Z, Li Z, Ou J (2004) Study on damage emergency repair performance of a simple beam embedded with shape memory alloys. Adv Struct Eng 7(6):495–502. doi:10.1260/1369433042863215

    Article  Google Scholar 

  9. Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263

    Google Scholar 

  10. Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242. doi:10.1177/1045389X9300400213

    Article  Google Scholar 

  11. Liang C, Rogers C (1990) One-dimensional thermo mechanical constitutive relations for shape memory materials. J Intell Mater Struct 1:207–234. doi:10.1177/1045389X9000100205

    Article  Google Scholar 

  12. Prahlad H, Chopra I (2001) Experimental characteristics of Ni- Ti shape memory alloys under uniaxial loading conditions. J Intell Mater Syst Struct 11(4):272–282

    Google Scholar 

  13. Gadaj S, Nowacki W, Pieeczyska E, Tobushi H (1999) Temperature evolution during tensile test of shape memory alloy. Arch Mech 51(6):649–663

    MATH  Google Scholar 

  14. McCormick PG, Liu Y, Miyazaki S (2001) Intrinsic thermal-mechanical behavior associated with the stress-induced martensitic transformation of NiTi. Mater Sci Eng 167:51–56

    Google Scholar 

  15. DesRoches R, McCormick J, Delemont M (2004) Cyclic properties of superelastic shape memory alloy wires and bars. J Struct Eng 130(1):38–46. doi:10.1061/(ASCE)0733-9445(2004)130:1(38)

    Article  Google Scholar 

  16. Otsuka K, Wayman CM (1998) Mechanism of shape memory effect and superplasticity. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, UK, pp 27–48

    Google Scholar 

  17. A23.3 (2004) Design of concrete structures. Canadian Standards Association, Mississauga, ON, 358 pp

  18. Ozbakkalogln T, Saatcioglu M (2004) Rectangular stress block for high-strength concrete. ACI Struct J 101(4):475–483

    Google Scholar 

  19. Scott BD, Park R, Priestley MJN (1982) Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI J 79(1):13–27

    Google Scholar 

  20. Park R, Paulay T (1975) Reinforced concrete structures. Wiley, New York

    Book  Google Scholar 

  21. Manach P-Y, Favier D (1997) Shear and tensile thermomechanical behavior of near equiatomic NiTi alloy. Mater Sci Eng A Struct Mater A222:45–57

    Article  Google Scholar 

  22. Zak AJ, Cartmell MP, Ostachowicz WM, Wiercigroch M (2003) One-dimensional shape memory alloy models for use with reinforced composite structures. Smart Mater Struct 12(3):338–346. doi:10.1088/0964-1726/12/3/304

    Article  Google Scholar 

  23. Otsuka K, Wayman CM (1999) Shape memory materials, 1st Paperback Edition. Cambridge University Press, Cambridge

    Google Scholar 

  24. Liu Y, Xie Z, Humbeeck JV, Delaey L (1998) Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater 46(12):4325–4338. doi:10.1016/S1359-6454(98)00112-8

    Article  Google Scholar 

  25. Orgeas L, Favier D (1995) Non-symmetric tension-compression behavior of NiTi alloy. J Phys IV JP 5(8):605–610

    Google Scholar 

  26. Youssef MA, Alam MS, Nehdi M (2008) Experimental investigation on the seismic behaviour of beam-column joints reinforced with superelastic shape memory alloys. J Earthq Eng 12(7):1205–1222

    Google Scholar 

  27. Youssef MA, Rahman M (2007) Simplified seismic modeling of reinforced concrete flexural members. Mag Concr Res 59(9):639–649. doi:10.1680/macr.2007.59.9.639

    Article  Google Scholar 

  28. Saiidi MS, Sadrossadat-Zadeh M, Ayoub C, Itani A (2007) Pilot study of behavior of concrete beams reinforced with shape memory alloys. J Mater Civ Eng 19(6):454–461. doi:10.1061/(ASCE)0899-1561(2007)19:6(454)

    Article  Google Scholar 

  29. Collins MP, Mitchell D (1991) Prestressed concrete structures. Prentice-Hall, Englewood Cliffs, NJ, 766 pp

  30. Ayoub C, Saiidi M, Itani A (2003) A study of shape-memory alloy-reinforced beams and cubes, Report No. CCEER-03-7. Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada, Reno, Nevada

  31. Beeby AW, Narayanan RS (2005) Designers’ guide to EN 1992–1-1 and EN 1992–1-2 : Eurocode 2: design of concrete structures : general rules and rules for buildings and structural fire design. Thomas Telford, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbahy, Y.I., Youssef, M.A. & Nehdi, M. Stress block parameters for concrete flexural members reinforced with superelastic shape memory alloys. Mater Struct 42, 1335–1351 (2009). https://doi.org/10.1617/s11527-008-9453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9453-z

Keywords

Navigation