Skip to main content
Log in

Development of user-friendly kernel-based Gaussian process regression model for prediction of load-bearing capacity of square concrete-filled steel tubular members

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A Machine Learning (ML) model based on Gaussian regression, using different kernel functions, is introduced in this paper to assess the load-carrying capacity of square concrete-filled steel tubular (CFST) columns. The input data used to develop the prediction model, which consists of 314 datasets including the structural geometrical parameters and the mechanical properties of the materials, was collected from available resources in the literature. The performance of the prediction model has also been validated by comparing with: (i) other ML models such as Artificial neural network, Support vector machine, etc.; and (ii) existing formulations in the literature for predicting load-carrying capacity of square CFST columns (including several codes such as EC4, AISC and ACI). The obtained results showed that the proposed model has outperformed them. The drawbacks of the model have been investigated by studying the influence of the input variables, together with uncertainty analysis providing 68, 95, and 99% prediction confidence intervals. Finally, a user-friendly interface has been developed to facilitate the application of the proposed model, providing the prediction value as well as confidence levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data is appended to this paper as a supplementary material.

Code availability

The user-friendly interface is appended to this paper as a supplementary material.

References

  1. Yang J, Sheehan T, Dai XH, Lam D (2015) Experimental study of beam to concrete-filled elliptical steel tubular column connections. Thin-Walled Struct 95:16–23

    Article  Google Scholar 

  2. McCann F (2015) Concrete-filled elliptical section steel columns under concentric and eccentric loading. In: Eighth international conference on advances in steel structures

  3. Espinos A, Gardner L, Romero ML, Hospitaler A (2011) Fire behaviour of concrete filled elliptical steel columns. Thin-Walled Struct 239–255

  4. Bergmann R, Matsui C, Meinsma C, Dutta D (1995) Design guide for concrete filled hollow section columns under static and seismic loading. CIDECT design guide 5, CIDECT

  5. Asteris PG, Nozhati S, Nikoo M et al (2018) Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1430874

    Article  Google Scholar 

  6. Nie J, Huang J, Fan J (2011) Experimental study on load-bearing behavior of rectangular CFST frame considering composite action of floor slab. J Build Struct 32:99–108

    Google Scholar 

  7. Jamaluddin N, Lam D, Dai XH, Ye J (2013) An experimental study on elliptical concrete filled columns under axial compression. J Constr Steel Res 87:6–16. https://doi.org/10.1016/j.jcsr.2013.04.002

    Article  Google Scholar 

  8. Lee SH, Uy B, Kim SH et al (2011) Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res 67:1–13

    Article  Google Scholar 

  9. Han LH, Hou C, Wang QL (2012) Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments. J Constr Steel Res 71:11–25

    Article  Google Scholar 

  10. Ren Q-X, Han L-H, Lam D, Li W (2014) Tests on elliptical concrete filled steel tubular (CFST) beams and columns. J Constr Steel Res 99:149–160. https://doi.org/10.1016/j.jcsr.2014.03.010

    Article  Google Scholar 

  11. Tran VQ, Nguyen HL, Dao VD et al (2019) Effect of temperature on the chloride binding capacity of cementitious materials. Mag Concr Res. https://doi.org/10.1680/jmacr.19.00484

    Article  Google Scholar 

  12. Han L-H, Yang Y-F (2001) Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections. Adv Struct Eng 4:93–100

    Article  Google Scholar 

  13. Tao Z, Song T-Y, Uy B, Han L-H (2016) Bond behavior in concrete-filled steel tubes. J Constr Steel Res 120:81–93

    Article  Google Scholar 

  14. Ren Q, Li M, Zhang M et al (2019) Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm. Appl Sci 9:2802. https://doi.org/10.3390/app9142802

    Article  Google Scholar 

  15. Schneider SP (1998) Axially loaded concrete-filled steel tubes. J Struct Eng 124:1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

    Article  Google Scholar 

  16. Fam A, Qie FS, Rizkalla S (2004) Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. J Struct Eng 130:631–640

    Article  Google Scholar 

  17. Ibáñez Usach C, Hernández-Figueirido D, Piquer Vicent A (2018) Influence of steel tube thickness and concrete strength on the axial capacity of stub CFST columns. In: Proceedings of the 12th International conference on advances in steel-concrete composite structures. ASCCS 2018. Editorial Universitat Politècnica de València, pp 253–257

  18. Yu Z, Ding F, Cai CS (2007) Experimental behavior of circular concrete-filled steel tube stub columns. J Constr Steel Res 63:165–174

    Article  Google Scholar 

  19. Dai X, Lam D (2010) Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns. J Constr Steel Res 66:931–942

    Article  Google Scholar 

  20. Choi KK, Xiao Y (2009) Analytical studies of concrete-filled circular steel tubes under axial compression. J Struct Eng 136:565–573

    Article  Google Scholar 

  21. Sarir P, Shen S-L, Wang Z-F, et al (2019) Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Eng Comput pp 1–11

  22. Eurocode 4 (2004) Design of composite steel and concrete structures. Part 1.1, general rules and rules for buildings. European Committee for Standardization, British Standards Institution, London

  23. Committee ACI (2011) 318-08: building code requirements for structural concrete and commentary. American Concrete Institute, USA

    Google Scholar 

  24. AISC (2010) Specification for structural steel buildings ANSI/AISC 360-16. American Institute of Steel Construction, Chicago, USA

    Google Scholar 

  25. Wang Z-B, Tao Z, Han L-H et al (2017) Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 135:209–221. https://doi.org/10.1016/j.engstruct.2016.12.049

    Article  Google Scholar 

  26. Han L-H, Yao G-H, Zhao X-L (2005) Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res 61:1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004

    Article  Google Scholar 

  27. Ding F, Fang C, Bai Y, Gong Y (2014) Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading. J Constr Steel Res 98:146–157. https://doi.org/10.1016/j.jcsr.2014.03.005

    Article  Google Scholar 

  28. Nguyen HQ, Ly H-B, Tran VQ et al (2020) Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials 13:1205. https://doi.org/10.3390/ma13051205

    Article  Google Scholar 

  29. Sarir P, Chen J, Asteris PG et al (2019) Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput. https://doi.org/10.1007/s00366-019-00808-y

    Article  Google Scholar 

  30. Ahmadi M, Naderpour H, Kheyroddin A (2014) Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng 14:510–517. https://doi.org/10.1016/j.acme.2014.01.006

    Article  Google Scholar 

  31. Ahmadi M, Naderpour H, Kheyroddin A (2017) ANN model for predicting the compressive strength of circular steel-confined concrete. Int J Civ Eng 15:213–221. https://doi.org/10.1007/s40999-016-0096-0

    Article  Google Scholar 

  32. Güneyisi EM, Gültekin A, Mermerdaş K (2016) Ultimate capacity prediction of axially loaded CFST short columns. Int J Steel Struct 16:99–114

    Article  Google Scholar 

  33. İpek S, Güneyisi EM (2019) Ultimate axial strength of concrete-filled double skin steel tubular column sections. In: Advances in civil engineering. https://www.hindawi.com/journals/ace/2019/6493037/. Accessed 3 Mar 2020

  34. Moon J, Kim JJ, Lee T-H, Lee H-E (2014) Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic. J Constr Steel Res 101:184–191. https://doi.org/10.1016/j.jcsr.2014.05.011

    Article  Google Scholar 

  35. Al-Khaleefi AM, Terro MJ, Alex AP, Wang Y (2002) Prediction of fire resistance of concrete filled tubular steel columns using neural networks. Fire Saf J 37:339–352. https://doi.org/10.1016/S0379-7112(01)00065-0

    Article  Google Scholar 

  36. Tran V-L, Thai D-K, Kim S-E (2019) Application of ANN in predicting ACC of SCFST column. Compos Struct 228:111332. https://doi.org/10.1016/j.compstruct.2019.111332

    Article  Google Scholar 

  37. Rasmussen CE (2003) Gaussian processes in machine learning. In: Advanced lectures on machine learning. Springer, Berlin

  38. Rasmussen CE (1997) Evaluation of Gaussian processes and other methods for non-linear regression. PhD Thesis, University of Toronto

  39. Williams CK, Rasmussen CE (1996) Gaussian processes for regression. In: Advances in neural information processing systems, pp 514–520

  40. Williams CK, Barber D (1998) Bayesian classification with Gaussian processes. IEEE Trans Pattern Anal Mach Intell 20:1342–1351

    Article  Google Scholar 

  41. Nickisch H, Rasmussen CE (2008) Approximations for binary Gaussian process classification. J Mach Learn Res 2035–2078

  42. Lin C, Li T, Chen S et al (2019) Gaussian process regression-based forecasting model of dam deformation. Neural Comput Appl 31:8503–8518. https://doi.org/10.1007/s00521-019-04375-7

    Article  Google Scholar 

  43. Kopsiaftis G, Protopapadakis E, Voulodimos A, et al (2019) Gaussian process regression tuned by Bayesian optimization for seawater intrusion prediction. In: Computational intelligence and neuroscience. https://www.hindawi.com/journals/cin/2019/2859429/. Accessed 30 Dec 2020

  44. Liu M, Huang C, Wang L et al (2020) Short-term soil moisture forecasting via Gaussian process regression with sample selection. Water 12:3085. https://doi.org/10.3390/w12113085

    Article  Google Scholar 

  45. Jin S-S (2020) Compositional kernel learning using tree-based genetic programming for Gaussian process regression. Struct Multidisc Optim 62:1313–1351. https://doi.org/10.1007/s00158-020-02559-7

    Article  MathSciNet  Google Scholar 

  46. Tolba H, Dkhili N, Nou J et al (2019) GHI forecasting using Gaussian process regression: kernel study. IFAC-PapersOnLine 52:455–460. https://doi.org/10.1016/j.ifacol.2019.08.252

    Article  Google Scholar 

  47. Cheng L, Ramchandran S, Vatanen T et al (2019) An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nat Commun 10:1798. https://doi.org/10.1038/s41467-019-09785-8

    Article  Google Scholar 

  48. Le T-T (2020) Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. J Compos Mater. https://doi.org/10.1177/0021998320953540

    Article  Google Scholar 

  49. Le TT, Guilleminot J, Soize C (2016) Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite. Comput Methods Appl Mech Eng 303:430–449. https://doi.org/10.1016/j.cma.2015.10.006

    Article  MathSciNet  MATH  Google Scholar 

  50. Guilleminot J, Le TT, Soize C (2013) Stochastic framework for modeling the linear apparent behavior of complex materials: application to random porous materials with interphases. Acta Mech Sin 29:773–782. https://doi.org/10.1007/s10409-013-0101-7

    Article  MathSciNet  MATH  Google Scholar 

  51. Le T-T (2021) Probabilistic modeling of surface effects in nano-reinforced materials. Comput Mater Sci 186:109987. https://doi.org/10.1016/j.commatsci.2020.109987

    Article  Google Scholar 

  52. Guilleminot J, Dolbow JE (2020) Data-driven enhancement of fracture paths in random composites. Mech Res Commun 103:103443. https://doi.org/10.1016/j.mechrescom.2019.103443

    Article  Google Scholar 

  53. Hu T, Guilleminot J, Dolbow JE (2020) A phase-field model of fracture with frictionless contact and random fracture properties: application to thin-film fracture and soil desiccation. Comput Methods Appl Mech Eng 368:113106. https://doi.org/10.1016/j.cma.2020.113106

    Article  MathSciNet  Google Scholar 

  54. Baydoun I, Savin É, Cottereau R et al (2014) Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media. Wave Motion 51:1325–1348. https://doi.org/10.1016/j.wavemoti.2014.08.001

    Article  MathSciNet  MATH  Google Scholar 

  55. Le MV, Yvonnet J, Feld N, Detrez F (2020) The coarse mesh condensation multiscale method for parallel computation of heterogeneous linear structures without scale separation. Comput Methods Appl Mech Eng 363:112877. https://doi.org/10.1016/j.cma.2020.112877

    Article  MathSciNet  MATH  Google Scholar 

  56. Tran VP, Brisard S, Guilleminot J, Sab K (2018) Mori-Tanaka estimates of the effective elastic properties of stress-gradient composites. Int J Solids Struct 146:55–68. https://doi.org/10.1016/j.ijsolstr.2018.03.020

    Article  Google Scholar 

  57. Staber B, Guilleminot J, Soize C et al (2019) Stochastic modeling and identification of a hyperelastic constitutive model for laminated composites. Comput Methods Appl Mech Eng 347:425–444. https://doi.org/10.1016/j.cma.2018.12.036

    Article  MathSciNet  MATH  Google Scholar 

  58. Tran V-P, Guilleminot J, Brisard S, Sab K (2016) Stochastic modeling of mesoscopic elasticity random field. Mech Mater 93:1–12. https://doi.org/10.1016/j.mechmat.2015.10.007

    Article  Google Scholar 

  59. Soize C, Desceliers C, Guilleminot J et al (2015) Stochastic representations and statistical inverse identification for uncertainty quantification in computational mechanics. In: UNCECOMP 2015, 1st ECCOMAS thematic international conference on uncertainty quantification in computational sciences and engineering, pp 1–26

  60. Le T-T, Guilleminot J, Soize C (2015) Stochastic continuum modeling of random interphases from atomistic simulations. In: Euromech 559, multi-scale computational methods for bridging scales in materials and structures, pp 1–2

  61. Le T-T (2020) Probabilistic investigation of the effect of stochastic imperfect interfaces in nanocomposites. Mech Mater 151:103608. https://doi.org/10.1016/j.mechmat.2020.103608

    Article  Google Scholar 

  62. Hun D-A, Guilleminot J, Yvonnet J, Bornert M (2019) Stochastic multiscale modeling of crack propagation in random heterogeneous media. Int J Numer Methods Eng 119:1325–1344. https://doi.org/10.1002/nme.6093

    Article  MathSciNet  Google Scholar 

  63. Le T-T (2015) Modélisation stochastique, en mécanique des milieux continus, de l’interphase inclusion-matrice à partir de simulations en dynamique moléculaire. PhD Thesis, University of Paris-Est Marne-la-Vallée

  64. Guilleminot J, Asadpoure A, Tootkaboni M (2019) Topology optimization under topologically dependent material uncertainties. Struct Multidisc Optim 60:1283–1287. https://doi.org/10.1007/s00158-019-02247-1

    Article  Google Scholar 

  65. Aslani F, Uy B, Tao Z, Mashiri F (2015) Behaviour and design of composite columns incorporating compact high-strength steel plates. J Constr Steel Res 107:94–110. https://doi.org/10.1016/j.jcsr.2015.01.005

    Article  Google Scholar 

  66. Bergmann R (1994) Load introduction in composite columns filled with high strength concrete. In: Grundy P, Holgate A, Wong B (eds) Tubular structures VI, proceedings of the Sixth international symposium on tubular structures. A. A. Balkema, Rotterdam, The Netherlands, Melbourne, Australia, pp 373–380

  67. Du Y, Chen Z, Xiong M-X (2016) Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel. Constr Build Mater 125:856–872. https://doi.org/10.1016/j.conbuildmat.2016.08.057

    Article  Google Scholar 

  68. Chapman JC, Neogi PK (1964) Research on concrete-filled tubular columns: by J.C. Chapman [and] P.K. Neogi. Engineering Structures Laboratories, Civil Engineering Dept., Imperial College, London

  69. Fong M, Chan SL, Uy B (2011) Advanced design for trusses of steel and concrete-filled tubular sections. Eng Struct 33:3162–3171. https://doi.org/10.1016/j.engstruct.2011.08.002

    Article  Google Scholar 

  70. Furlong RW (1967) Strength of steel-encased concrete beam columns. J Struct Div 93:113–124

    Article  Google Scholar 

  71. Ghannam S, Jawad YA, Hunaiti Y (2004) Failure of lightweight aggregate concrete-filled steel tubular columns. Steel Compos Struct 4:1–8. https://doi.org/10.12989/scs.2004.4.1.001

    Article  Google Scholar 

  72. Grauers M (1993) Composite columns of hollow steel sections filled with high strength concrete. PhD Thesis, Chalmers University

  73. Han L-H (2002) Tests on stub columns of concrete-filled RHS sections. J Constr Steel Res 58:353–372. https://doi.org/10.1016/S0143-974X(01)00059-1

    Article  Google Scholar 

  74. Han L-H, Yao G-H (2003) Influence of concrete compaction on the strength of concrete-filled steel RHS columns. J Constr Steel Res 59:751–767. https://doi.org/10.1016/S0143-974X(02)00076-7

    Article  Google Scholar 

  75. Lin-Hai H, Zhong T, Wei L (2004) Effects of sustained load on concrete-filled hollow structural steel columns. J Struct Eng 130:1392–1404. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1392)

    Article  Google Scholar 

  76. Khan M, Uy B, Tao Z, Mashiri F (2017) Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections. Eng Struct 147:458–472. https://doi.org/10.1016/j.engstruct.2017.06.016

    Article  Google Scholar 

  77. Knowles RB, Park R (1969) Strength of concrete filled steel tubular columns. J Struct Div 95:2565–2588

    Article  Google Scholar 

  78. Lam D, Williams CA (2004) Experimental study on concrete filled square hollow sections. Steel Compos Struct 4:95–112. https://doi.org/10.12989/scs.2004.4.2.095

    Article  Google Scholar 

  79. Lin CY (1988) Axial capacity of concrete infilled cold-formed steel columns. Ninth international specialty conference on cold-formed steel structures. St. Louis, Missouri, U.S.A., pp 443–457

    Google Scholar 

  80. Matsui C, Tsuda K, Ozaki I, Ishibashi Y (1997) Strength of slender concrete filled steel tubular columns. J Struct Constr Eng (Trans AIJ) 62:137–144. https://doi.org/10.3130/aijs.62.137_1

    Article  Google Scholar 

  81. Mursi M, Uy B (2004) Strength of slender concrete filled high strength steel box columns. J Constr Steel Res 60:1825–1848. https://doi.org/10.1016/j.jcsr.2004.05.002

    Article  Google Scholar 

  82. Kenji S, Hiroyuki N, Shosuke M, Isao N (2004) Behavior of centrally loaded concrete-filled steel-tube short columns. J Struct Eng 130:180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)

    Article  Google Scholar 

  83. Tao Z, Han L-H, Wang D-Y (2007) Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Struct 45:517–527. https://doi.org/10.1016/j.tws.2007.04.003

    Article  Google Scholar 

  84. Tomii M, Sakino K (1979) Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns. Trans Archit Inst Jpn 55–65

  85. Uy B (2001) Strength of short concrete filled high strength steel box columns. J Constr Steel Res 57:113–134. https://doi.org/10.1016/S0143-974X(00)00014-6

    Article  Google Scholar 

  86. Xiong M-X, Xiong D-X, Liew JYR (2017) Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Eng Struct 136:494–510. https://doi.org/10.1016/j.engstruct.2017.01.037

    Article  Google Scholar 

  87. Vrcelj Z, Uy B (2002) Behaviour and design of steel square hollow sections filled with high strength concrete. Aust J Struct Eng 3:153–170. https://doi.org/10.1080/13287982.2002.11464902

    Article  Google Scholar 

  88. Yamamoto T, Kawaguchi J, Morino S (2002) Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. In: Composite construction in steel and concrete IV, pp 879–890. https://doi.org/10.1061/40616(281)76

  89. Yang YF, Han LH (2012) Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct 50:147–156. https://doi.org/10.1016/j.tws.2011.09.007

    Article  Google Scholar 

  90. Yu Q, Tao Z, Wu Y-X (2008) Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Struct 46:362–370. https://doi.org/10.1016/j.tws.2007.10.001

    Article  Google Scholar 

  91. Zhu A, Zhang X, Zhu H et al (2017) Experimental study of concrete filled cold-formed steel tubular stub columns. J Constr Steel Res 134:17–27. https://doi.org/10.1016/j.jcsr.2017.03.003

    Article  MathSciNet  Google Scholar 

  92. Dundu M (2016) Column buckling tests of hot-rolled concrete filled square hollow sections of mild to high strength steel. Eng Struct 127:73–85. https://doi.org/10.1016/j.engstruct.2016.08.039

    Article  Google Scholar 

  93. Lyu X, Xu Y, Xu Q, Yu Y (2019) Axial compression performance of square thin walled concrete-filled steel tube stub columns with reinforcement stiffener under constant high-temperature. Materials 12:1098. https://doi.org/10.3390/ma12071098

    Article  Google Scholar 

  94. Uenaka K (2014) Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression. Thin-Walled Struct 78:131–137. https://doi.org/10.1016/j.tws.2014.01.023

    Article  Google Scholar 

  95. Giakoumelis G, Lam D (2004) Axial capacity of circular concrete-filled tube columns. J Constr Steel Res 60:1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001

    Article  Google Scholar 

  96. Le T-T, Phan HC (2020) Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method. In: Advances in civil engineering. https://www.hindawi.com/journals/ace/2020/8855069/. Accessed 28 Dec 2020

  97. MathWorks T (2018) MATLAB. Natick, MA, USA

    Google Scholar 

  98. Hopfield JJ (1988) Artificial neural networks. IEEE Circuits Devices Mag 4:3–10

    Article  Google Scholar 

  99. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20:273–297

    MATH  Google Scholar 

  100. Chun P, Ujike I, Mishima K et al (2020) Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr Build Mater 253:119238. https://doi.org/10.1016/j.conbuildmat.2020.119238

    Article  Google Scholar 

  101. Jang J-SR (1993) ANFIS adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  102. Tahir Z ul R, Mandal P (2017) Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression. Eng Struct 152:843–855. https://doi.org/10.1016/j.engstruct.2017.09.016

  103. Ly H-B, Le LM, Duong HT et al (2019) Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections. Appl Sci 9:2258. https://doi.org/10.3390/app9112258

    Article  Google Scholar 

  104. Mallela UK, Upadhyay A (2016) Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin-Walled Struct 102:158–164. https://doi.org/10.1016/j.tws.2016.01.025

    Article  Google Scholar 

  105. Janusz K, Janusz R, Artur D (1995) HPC strength prediction using artificial neural network. J Comput Civ Eng 9:279–284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)

    Article  Google Scholar 

  106. Yeh I-C (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 1797–1808

  107. Prasad BKR, Eskandari H, Reddy BVV (2009) Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr Build Mater 23:117–128. https://doi.org/10.1016/j.conbuildmat.2008.01.014

    Article  Google Scholar 

  108. Jui-Sheng C, Chien-Kuo C, Mahmoud F, Ismail A-T (2011) Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. J Comput Civ Eng 25:242–253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088

    Article  Google Scholar 

  109. Fazel Zarandi MH, Türksen IB, Sobhani J, Ramezanianpour AA (2008) Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Appl Soft Comput 8:488–498. https://doi.org/10.1016/j.asoc.2007.02.010

    Article  Google Scholar 

  110. Hoang N-D, Pham A-D, Nguyen Q-L, Pham Q-N (2016) Estimating compressive strength of high performance concrete with Gaussian process regression model. In: Advances in civil engineering. https://www.hindawi.com/journals/ace/2016/2861380/. Accessed 10 Sep 2019

  111. Ly H-B, Pham BT, Le LM et al (2020) Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05214-w

    Article  Google Scholar 

  112. Tran V-L, Thai D-K, Nguyen D-D (2020) Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct 151:106720. https://doi.org/10.1016/j.tws.2020.106720

    Article  Google Scholar 

  113. Tran V-L, Kim S-E (2020) Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns. Thin-Walled Struct 152:106744. https://doi.org/10.1016/j.tws.2020.106744

    Article  Google Scholar 

  114. Thanh Duong H, Chi Phan H, Le T-T, Duc Bui N (2020) Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model. Structures 28:757–765. https://doi.org/10.1016/j.istruc.2020.09.013

    Article  Google Scholar 

  115. Le T-T (2020) Practical hybrid machine learning approach for estimation of ultimate load of elliptical concrete-filled steel tubular columns under axial loading. Adv Civ Eng 2020:e8832522. https://doi.org/10.1155/2020/8832522

    Article  Google Scholar 

  116. Thai D-K, Tu TM, Bui TQ, Bui T-T (2021) Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads. Eng Comput 37:597–608. https://doi.org/10.1007/s00366-019-00842-w

    Article  Google Scholar 

  117. Le T-T (2020) Multiscale analysis of elastic properties of nano-reinforced materials exhibiting surface effects. Application for determination of effective shear modulus. J Compos Sci 4:172. https://doi.org/10.3390/jcs4040172

  118. Le T-T (2020) Analysis of elastic deformation of amorphous polyethylene in uniaxial tensile test by using molecular dynamics simulation. Comput Methods Mater Sci 20:38–44

    Google Scholar 

  119. Le T-T (2020) Surrogate neural network model for prediction of load-bearing capacity of CFSS members considering loading eccentricity. Appl Sci 10:3452. https://doi.org/10.3390/app10103452

    Article  Google Scholar 

  120. Qi C, Tang X, Dong X et al (2019) Towards Intelligent Mining for Backfill: a genetic programming-based method for strength forecasting of cemented paste backfill. Miner Eng 133:69–79. https://doi.org/10.1016/j.mineng.2019.01.004

    Article  Google Scholar 

  121. Quoc TH, Van Tham V, Tu TM (2021) Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech. https://doi.org/10.1007/s00707-020-02899-x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tien-Thinh Le; Methodology: Tien-Thinh Le and Minh Vuong Le; Formal analysis and investigation: Tien-Thinh Le and Minh Vuong Le; Writing—original draft preparation: Tien-Thinh Le; Writing—review and editing: Tien-Thinh Le and Minh Vuong Le.

Corresponding author

Correspondence to Tien-Thinh Le.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Materials: The dataset and user-friendly interface are appended to this paper as supplementary materials.

Appendix A. Supporting information file is attached to this paper [114,115,116,117,118,119,120,121].

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 2418kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, TT., Le, M.V. Development of user-friendly kernel-based Gaussian process regression model for prediction of load-bearing capacity of square concrete-filled steel tubular members. Mater Struct 54, 59 (2021). https://doi.org/10.1617/s11527-021-01646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01646-5

Keywords

Navigation