Skip to main content
Log in

Future perspectives on QDs embedded nano-fibrous materials as high capacity sustainable anode for Na-ion batteries technology

  • Perspective
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Electrode functionalization (shape-selective materials) has transformed the energy storage and production technology in the modern age of developing Batteries science. Sodium-ion batteries are promising electrochemical energy supply system suitable alternative to Li-ion batteries, particularly for low cost, earth abundance Na ion, high structural stability, and better functioning behavior at cooler temperatures. In Na-ion batteries (NIBs), lowest potential electrode (negative electrode) act as primary charge carrier and thermodynamically susceptible to reduce alkali Na +. However, conventional anode material suffers from volume variation and stability issues. Quantum dots (QDs) size (1–10 nm) supported nanofiber (1D) functions as high rate redox-active materials due to synergistic interaction and structural confinement effect. Present perspective shed light on various structural interactions, thermodynamic interactions and interfaces which may lower the energy barrier (activation energy) during electrode electrochemical performance. Quantum dots provide functional sites in nanofiber resulting in expansion of Na+ storage and sodiation reaction. Thus, structural and chemical variation unveil future research for high capacity, robust Na+ storage, and better thermodynamic stability of fibrous Na-ion anode materials to upgrade the futuristic electrode technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright permission from Ref. 26

Figure 2

Copyright permission with ref. 15. (c) SEM image (d) TEM image of SnO2 QDs-CC as Na-ion anode. Copyright permission from ref. 15

Figure 3

Copyright permission from Ref. 39

Similar content being viewed by others

References

  1. S. Kumar, S. Kumar, R.N. Rai, Y. Lee, T. Hong Chuong Nguyen, S. Young Kim, Q. Van Le, L. Singh, Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Sol. Energy 249, 606–623 (2023). https://doi.org/10.1016/j.solener.2022.12.013

    Article  CAS  Google Scholar 

  2. S. Kumar, P. K. Yadav, P. Maiti, Renewable Cathode Materials Dependent on Conjugated Polymer Composite Systems. In Conjugated Polymers for Next-Generation Applications, Volume 2: Energy Storage Devices, ed. by V. Kumar, K. Sharma, R. Sehgal, S. Kalia (Woodhead Publisher, An imprint of Elsevier, 2022), pp 55–90. https://doi.org/10.1016/B978-0-12-824094-6.00002-9.

  3. Q. Xu, Y. Niu, J. Li, Z. Yang, J. Gao, L. Ding, H. Ni, P. Zhu, Y. Liu, Y. Tang, Z.-P. Lv, B. Peng, T.S. Hu, H. Zhou, C. Xu, Recent progress of quantum dots for energy storage applications. Carbon Neutrality (2022). https://doi.org/10.1007/s43979-022-00002-y

    Article  Google Scholar 

  4. Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M.S. Balogun, Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Stor. Mater. 25, 41–51 (2020). https://doi.org/10.1016/j.ensm.2019.11.001

    Article  Google Scholar 

  5. Y. Wang, D. Chen, J. Zhang, M.S. Balogun, P. Wang, Y. Tong, Y. Huang, Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202112738

    Article  Google Scholar 

  6. S. Kumar, A. N. Srivastava, Application of Carbon Nanomaterials Decorated Electrochemical Sensor for Analysis of Environmental Pollutants. In Analytical Chemistry - Advancement, Perspectives and Applications, ed. by A.N. Srivastva (IntechOpen, 2021). https://doi.org/10.5772/intechopen.96538.

  7. M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon N. Y. 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091

    Article  CAS  Google Scholar 

  8. S. Jin, X. Sun, S. Cai, J. Guo, A. Fan, N. Zhang, H. Wu, C. Zheng, SnS2 quantum dots uniformly anchored on dispersed S-doped graphene as high-rate anodes for sodium-ion batteries. Ceram. Int. 46(10), 14416–14424 (2020). https://doi.org/10.1016/j.ceramint.2020.02.237

    Article  CAS  Google Scholar 

  9. S. Kumar, P.K. Yadav, R. Prakash, A. Santra, P. Maiti, Multifunctional graphene oxide implanted polyurethane ionomer gel electrolyte for quantum dots sensitized solar cell. J. Alloys Compd. 922, 166121 (2022). https://doi.org/10.1016/j.jallcom.2022.166121

    Article  CAS  Google Scholar 

  10. S. Kumar, I.C. Maurya, O. Prakash, P. Srivastava, S. Das, P. Maiti, Functionalized thermoplastic polyurethane as hole conductor for quantum dot-sensitized solar cell. ACS Appl. Energy Mater. 1(9), 4641–4650 (2018). https://doi.org/10.1021/acsaem.8b00783

    Article  CAS  Google Scholar 

  11. G.Y. Wang, S. Wang, X. Sun, Y. Liu, P. Nie, L. Hou, L. Chang, C. Yuan, Metallic Mo2C quantum dots confined in functional carbon nanofiber films toward efficient sodium storage: heterogeneous interface engineering and charge-storage mechanism. ACS Appl. Energy Mater. 5(1), 1114–1125 (2022). https://doi.org/10.1021/acsaem.1c03477

    Article  CAS  Google Scholar 

  12. S. Yang, C. Liu, H. Li, S. Wang, J. Choi, L. Li, Quantum dot heterostructure with directional charge transfer channels for high sodium storage. Energy Stor. Mater. 39, 278–286 (2021). https://doi.org/10.1016/j.ensm.2021.04.039

    Article  Google Scholar 

  13. S. Kumar, R. Prakash, P. Maiti, Redox mediation through integrating chain extenders in active ionomer polyurethane hard segments in cds quantum dot sensitized solar cell. Sol. Energy 231, 985–1001 (2022). https://doi.org/10.1016/j.solener.2021.12.043

    Article  CAS  Google Scholar 

  14. Z. Chen, D. Zhu, J. Li, D. Liang, M. Liu, Z. Hu, X. Li, Z. Feng, J. Huang, Porous functionalized carbon as anode for a long cycling of sodium-ion batteries. Ionics (Kiel). 25(9), 4517–4522 (2019). https://doi.org/10.1007/s11581-019-03157-4

    Article  CAS  Google Scholar 

  15. Y. Xu, E. Matios, J. Luo, T. Li, X. Lu, S. Jiang, Q. Yue, W. Li, Y. Kang, SnO2Quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett. 21(1), 816–822 (2021). https://doi.org/10.1021/acs.nanolett.0c04566

    Article  CAS  Google Scholar 

  16. L. Yue, L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, X. Sun, Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 8(23), 11493–11510 (2020). https://doi.org/10.1039/d0ta03963b

    Article  CAS  Google Scholar 

  17. L. Luo, J. Song, L. Song, H. Zhang, Y. Bi, L. Liu, L. Yin, F. Wang, G. Wang, Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett. (2019). https://doi.org/10.1007/s40820-019-0294-9

    Article  Google Scholar 

  18. Z. Du, W. Ai, J. Yang, Y. Gong, C. Yu, J. Zhao, X. Dong, G. Sun, W. Huang, In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries. ACS Sustain. Chem. Eng. 6(11), 14795–14801 (2018). https://doi.org/10.1021/acssuschemeng.8b03327

    Article  CAS  Google Scholar 

  19. L. Singh, L. Dhavala, R. Bhimireddi, A.A. Ansari, S. Kumar, V. Srivastava, R.N. Rai, Q. Van Le, Y. Lee, Low-cost flame synthesized La2/3Cu3Ti4O12 electro-ceramic and extensive investigation on electrical, impedance, modulus, and optical properties. Ceram. Int. 49(13), 21795–21803 (2023). https://doi.org/10.1016/j.ceramint.2023.04.001

    Article  CAS  Google Scholar 

  20. H. Yang, T. Xiong, Z. Zhu, R. Xiao, X. Yao, Y. Huang, M.S. Balogun, Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes. Carbon Energy 4(5), 820–832 (2022). https://doi.org/10.1002/cey2.173

    Article  CAS  Google Scholar 

  21. X. Wang, K. Cao, Y. Wang, L. Jiao, Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries. Small (2017). https://doi.org/10.1002/smll.201700873

    Article  Google Scholar 

  22. Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015). https://doi.org/10.1002/adma.201503015

    Article  CAS  Google Scholar 

  23. Z. Huang, P. Luo, Q. Wu, H. Zheng, Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids 161, 110479 (2022). https://doi.org/10.1016/j.jpcs.2021.110479

    Article  CAS  Google Scholar 

  24. S. Nie, L. Liu, J. Liu, J. Xia, Y. Zhang, J. Xie, M. Li, X. Wang, TiO2-Sn/C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium ion batteries. J. Alloys Compd. 772, 314–323 (2019). https://doi.org/10.1016/j.jallcom.2018.09.044

    Article  CAS  Google Scholar 

  25. L. Ran, I. Gentle, T. Lin, B. Luo, N. Mo, M. Rana, M. Li, L. Wang, R. Knibbe, Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J. Power Sources 461, 228116 (2020). https://doi.org/10.1016/j.jpowsour.2020.228116

    Article  CAS  Google Scholar 

  26. K. Zhang, F. Xiong, J. Zhou, L. Mai, L. Zhang, Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104222

    Article  Google Scholar 

  27. P. Zhou, M. Zhang, L. Wang, Q. Huang, Z. Su, L. Li, X. Wang, Y. Li, C. Zeng, Z. Guo, Synthesis and electrochemical performance of ZnSe electrospinning nanofibers as an anode material for lithium ion and sodium ion batteries. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00569

    Article  Google Scholar 

  28. X. Wang, Y. Liu, Y. Wang, L. Jiao, CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties. Small 12(35), 4865–4872 (2016). https://doi.org/10.1002/smll.201601474

    Article  CAS  Google Scholar 

  29. C. Zhang, D. Wei, F. Wang, G. Zhang, J. Duan, F. Han, H. Duan, J. Liu, Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 53, 26–35 (2020). https://doi.org/10.1016/j.jechem.2020.05.011

    Article  CAS  Google Scholar 

  30. X. Li, C. Deng, H. Wang, J. Si, S. Zhang, B. Huang, Iron nitride@C nanocubes inside core-shell fibers to realize high air-stability, ultralong life, and superior lithium/sodium storages. ACS Appl. Mater. Interfaces 13(6), 7297–7307 (2021). https://doi.org/10.1021/acsami.0c21447

    Article  CAS  Google Scholar 

  31. Y. Zhang, Y. Huang, V. Srot, P.A. van Aken, J. Maier, Y. Yu, Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-020-00506-1

    Article  Google Scholar 

  32. J. Yuan, X. Hu, J. Li, Y. Liu, G. Zhong, T. Huang, V2O3 nanoparticles confined in high-conductivity and high-throughput carbon nanofiber nanohybrids for advanced sodium-ion capacitors. ACS Appl. Mater. Interfaces 13(8), 10001–10012 (2021). https://doi.org/10.1021/acsami.0c21313

    Article  CAS  Google Scholar 

  33. S.H. Cho, J.H. Kim, I.G. Kim, J.H. Park, J.W. Jung, H.S. Kim, I.D. Kim, Reduced graphene-oxide-encapsulated Mos2/carbon nanofiber composite electrode for high-performance Na-ion batteries. Nanomaterials 11(10), 2691 (2021). https://doi.org/10.3390/nano11102691

    Article  CAS  Google Scholar 

  34. J. Jiang, C. Ma, W. Zhang, Y. He, X. Li, X. Yuan, Controlled design for integration of FeP into 3D carbon frameworks for superior Na storage. Chem. Eng. J. 429, 132271 (2022). https://doi.org/10.1016/j.cej.2021.132271

    Article  CAS  Google Scholar 

  35. D. Kong, Y. Wang, S. Huang, Y. Von Lim, J. Zhang, L. Sun, B. Liu, T. Chen, Y. Valdivia, P. Alvarado, H.Y. Yang, Surface modification of Na2Ti3O7 Nanofibre Arrays Using N-Doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 7(20), 12751–12762 (2019). https://doi.org/10.1039/c9ta01641d

    Article  CAS  Google Scholar 

  36. Q. Cheng, Y. Li, P. Gao, G. Xia, S. He, Y. Yang, H. Pan, X. Yu, Lithium azides induced SnS quantum dots for ultra-fast and long-term sodium storage. Small (2023). https://doi.org/10.1002/smll.202302188

    Article  Google Scholar 

  37. L. Qing, R. Li, W. Su, W. Zhao, Y. Li, G. Chen, N. Liu, J. Chen, Nanostructures of carbon nanofiber-constrained stannous sulfide with high flexibility and enhanced performance for sodium-ion batteries. Energy Fuels 36(4), 2179–2188 (2022). https://doi.org/10.1021/acs.energyfuels.1c04053

    Article  CAS  Google Scholar 

  38. H. Yin, M.L. Cao, X.X. Yu, H. Zhao, Y. Shen, C. Li, M.Q. Zhu, Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 1(8), 1615–1621 (2017). https://doi.org/10.1039/c7qm00128b

    Article  CAS  Google Scholar 

  39. Y. Wang, Y. Wang, Y.X. Wang, X. Feng, W. Chen, J. Qian, X. Ai, H. Yang, Y. Cao, In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl. Mater. Interfaces 11, 19218–19226 (2019). https://doi.org/10.1021/acsami.9b05134

    Article  CAS  Google Scholar 

  40. L. Zhang, Y. Song, Y. Hu, H. Ruan, J. Bai, S. Li, Y. Liu, S. Guo, Flexible Sb/Sb2O3-C nanofibers as binder-free anodes for high-performance and stable sodium-ion batteries. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.161913

    Article  Google Scholar 

  41. H. Wu, X. Chen, X. Zhang, Z. Jiang, Y. Dong, H. Li, L. Ni, G. Diao, M. Chen, Multidimensional nanobox structural carbon nanofibers with dual confined effect for boosting storage performance and electrochemical kinetics of alkali metal ion batteries. Chem. Eng. J. 428, 131207 (2022). https://doi.org/10.1016/j.cej.2021.131207

    Article  CAS  Google Scholar 

  42. Q. Wang, C. Tang, D. Sun, A. Du, J.Z. Ou, M. Wu, H. Zhang, Coupling Fe3O4/Fe1-XS@carbon with carbon-coated MoS2 nanosheets as a superior anode for sodium-ion batteries. Chem. Eng. J. 427, 131652 (2022). https://doi.org/10.1016/j.cej.2021.131652

    Article  CAS  Google Scholar 

  43. J. Yuan, M. Qiu, X. Hu, Y. Liu, G. Zhong, H. Zhan, Z. Wen, Pseudocapacitive vanadium nitride quantum dots modified one-dimensional carbon cages enable highly kinetics-compatible sodium ion capacitors. ACS Nano 16(9), 14807–14818 (2022). https://doi.org/10.1021/acsnano.2c05662

    Article  CAS  Google Scholar 

  44. Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2–carbon nanofibers based on graphene modifications. Nano-Micro Lett. (2019). https://doi.org/10.1007/s40820-019-0248-2

    Article  Google Scholar 

  45. X. Hu, Y. Liu, J. Chen, J. Jia, H. Zhan, Z. Wen, FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. J. Mater. Chem. A 7(3), 1138–1148 (2019). https://doi.org/10.1039/c8ta10468a

    Article  CAS  Google Scholar 

  46. M. Wei, Y. Wang, C. Li, C. Jin, J. Sui, R. Yang, PPy-derived sandwich-structured hollow carbon fiber anchoring Sn4P3 as anode materials with improved Na+ storage. ChemNanoMat 5(12), 1471–1476 (2019). https://doi.org/10.1002/cnma.201900445

    Article  CAS  Google Scholar 

  47. Y. Liu, F. Wang, L.Z. Fan, Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 11(8), 4026–4037 (2018). https://doi.org/10.1007/s12274-018-1985-0

    Article  CAS  Google Scholar 

  48. Y. Wu, Z. Wei, R. Xu, Y. Gong, L. Gu, J. Ma, Y. Yu, Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 12(9), 2211–2217 (2019). https://doi.org/10.1007/s12274-018-2248-9

    Article  CAS  Google Scholar 

  49. S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou, S. Chong, Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17(12), 11220–11252 (2023). https://doi.org/10.1021/acsnano.3c02892

    Article  CAS  Google Scholar 

  50. Y. Sun, Y. Yang, X.L. Shi, G. Suo, H. Chen, X. Hou, S. Lu, Z.G. Chen, Self-standing film assembled using SnS-Sn/multiwalled carbon nanotubes encapsulated carbon fibers: a potential large-scale production material for ultra-stable sodium-ion battery anodes. ACS Appl. Mater. Interfaces 13(24), 28359–28368 (2021). https://doi.org/10.1021/acsami.1c07152

    Article  CAS  Google Scholar 

  51. Z. He, H. Guo, J.D. Lacoste, D. Werder, D.J. Durocher, R.A. Cook, P. Truong, H. Luo, X.D. Zhou, L. Fei, A generalized synthesis strategy for binderless, free-standing anode for lithium/sodium ion battery comprised of metal selenides@carbon nanofibers. ACS Appl. Energy Mater. 5(1), 842–851 (2022). https://doi.org/10.1021/acsaem.1c03277

    Article  CAS  Google Scholar 

  52. B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan, C. Wang, J. Janek, D. Schröder, G. Wang, Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32(18), 1903891 (2020). https://doi.org/10.1002/adma.201903891

    Article  CAS  Google Scholar 

  53. A. Massaro, F. Fasulo, A. Pecoraro, A. Langella, A.B. Munoz-Garcia, M. Pavone, First-principles design of nanostructured electrode materials for Na-ion batteries: challenges and perspectives. Phys. Chem. Chem. Phys. 25, 18623 (2023). https://doi.org/10.1039/d3cp01201h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors (Dr. Laxman Singh and Dr. Sunil Kumar) are thankful to their respective Institutions for providing the infrastructure of peaceful academic and research environment to compile the collective studies. This investigation was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the MSIT (2021R1A2C1010373) and the MOE (2021R1A6A1A03038858).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. N. Rai, Youngil Lee or Laxman Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Rai, R.N., Singh, D. et al. Future perspectives on QDs embedded nano-fibrous materials as high capacity sustainable anode for Na-ion batteries technology. MRS Energy & Sustainability 10, 238–246 (2023). https://doi.org/10.1557/s43581-023-00067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-023-00067-x

Keywords

Navigation