Skip to main content

Advertisement

Log in

A study on various sources and technologies for production of biodiesel and its efficiency

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Energy from renewable sources is steadily expanding, even if fossil fuels remain the primary source of energy. Numerous advantages to biodiesel over other biofuels and fossil fuels make it a promising alternative fuel. It was the goal of this research project to distinguish between conventional and new technologies used throughout the biodiesel production and consumption life cycle. Biodiesel generation from micro-algal lipids and enhanced homogeneous and enzymatic transesterification, as well as non-catalytic supercritical transesterification using microwave and ultrasound as helping technologies, are all discussed in detail in the study. Our examination of biodiesel environmental assessment principles and current accomplishments takes into account all the variables that can affect the process efficiency and safety. Scientific research and development on biodiesel have increased over the past few decades. Alternative fuels are high in demand due to dwindling petroleum hydrocarbon supplies worldwide. Biodiesel, a type of biofuel, is now being hailed as a breakthrough commodity that will eventually replace petroleum-based diesel. Biodiesel is a crucial advantage over conventional diesel in biodegradability, reduced exhaust emissions, more outstanding flash points, good lubricity, and other characteristics. Feedstock for biodiesel production includes various edible oils, non-edible oils, animal fats, microalgal oils, waste oils, and advanced solar oil. Biodiesel is prepared by breaking down the fats and oils into their corresponding alkyl esters by heating them. Processes such as transesterification, dilution, pyrolysis, and microemulsion are used to synthesize biodiesel. Microwave-assisted transesterification, reactive distillation, membrane separation, reactive extraction, and ultrasound are all recent developments in biodiesel manufacturing. The present works compare the ongoing research in the area of various biodiesel production processes in terms of their effectiveness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The authors confirmed that the data supporting the present paper is obtained through an open access and any extra permission is not required.

References

  1. M. Safieddin Ardebili, B. Ghobadian, G. Najafi, A. Chegeni, Biodiesel production potential from edible oil seeds in Iran. Renew. Sustain. Energy Rev. 15(6), 3041–3044 (2011). https://doi.org/10.1016/j.rser.2011.03.004

    Article  CAS  Google Scholar 

  2. L. Yang, M. Takase, M. Zhang, T. Zhao, X. Wu, Potential non-edible oil feedstock for biodiesel production in Africa: a survey. Renew. Sustain. Energy Rev. 38, 461–477 (2014). https://doi.org/10.1016/j.rser.2014.06.002

    Article  CAS  Google Scholar 

  3. F. Toldra-Reig, L. Mora, F. Toldra, Trends in biodiesel production from animal fat waste. Appl. Sci. 10(3644), 1–17 (2020)

    Google Scholar 

  4. H.M. Dharmadhikari, P.R. Kumar, S.S. Rao, Performance and emissions of C.I. engine using blends of biodiesel and diesel at different injection pressures. Int. J. Appl. Res. Mech. Eng. (2013). https://doi.org/10.47893/ijarme.2013.1077

    Article  Google Scholar 

  5. A. Demirbas, Recent developments in biodiesel fuels. Int. J. Green Energy 4(1), 15–26 (2007). https://doi.org/10.1080/15435070601015395

    Article  CAS  Google Scholar 

  6. G. Madras, C. Kolluru, R. Kumar, Synthesis of biodiesel in supercritical fluids. Fuel 83(14–15 SPEC. ISS.), 2029–2033 (2004). https://doi.org/10.1016/j.fuel.2004.03.014

    Article  CAS  Google Scholar 

  7. A. Bušić et al., Recent trends in biodiesel and biogas production. Food Technol. Biotechnol. 56(2), 152–173 (2018). https://doi.org/10.17113/ftb.56.02.18.5547

    Article  CAS  Google Scholar 

  8. P. Cao, M.A. Dubé, A.Y. Tremblay, High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32(11), 1028–1036 (2008). https://doi.org/10.1016/j.biombioe.2008.01.020

    Article  CAS  Google Scholar 

  9. K.G. Georgogianni, M.G. Kontominas, P.J. Pomonis, D. Avlonitis, V. Gergis, Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 89(5), 503–509 (2008). https://doi.org/10.1016/j.fuproc.2007.10.004

    Article  CAS  Google Scholar 

  10. T.M.I. Riayatsyah et al., Biodiesel production from Reutealis trisperma oil using conventional and ultrasonication through esterification and transesterification. Sustainability (2021). https://doi.org/10.3390/su13063350

    Article  Google Scholar 

  11. Y.S. Pradana, A. Hidayat, A. Prasetya, A. Budiman, Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst. Energy Procedia 143, 742–747 (2017). https://doi.org/10.1016/j.egypro.2017.12.756

    Article  CAS  Google Scholar 

  12. S. Niju, K.M.M.S. Begum, N. Anantharaman, Continuous flow reactive distillation process for biodiesel production using waste egg shells as heterogeneous catalysts. RSC Adv. 4(96), 54109–54114 (2014). https://doi.org/10.1039/c4ra05848h

    Article  CAS  Google Scholar 

  13. R. Ahmed, K. Huddersman, Review of biodiesel production by the esterification of wastewater containing fats oils and grease (FOGs). J. Ind. Eng. Chem. 110, 1–14 (2022). https://doi.org/10.1016/j.jiec.2022.02.045

    Article  CAS  Google Scholar 

  14. J. Zhang, S. Chen, R. Yang, Y. Yan, Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel 89(10), 2939–2944 (2010). https://doi.org/10.1016/j.fuel.2010.05.009

    Article  CAS  Google Scholar 

  15. H. Chen, B. Peng, D. Wang, J. Wang, Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front. Chem. Eng. China 1(1), 11–15 (2007). https://doi.org/10.1007/s11705-007-0003-y

    Article  Google Scholar 

  16. L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, H. Bandow, Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour. Technol. 101(2), 639–645 (2010). https://doi.org/10.1016/j.biortech.2009.08.050

    Article  CAS  Google Scholar 

  17. Y. Wang, S. Ou, P. Liu, F. Xue, S. Tang, Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A 252(1–2), 107–112 (2006). https://doi.org/10.1016/j.molcata.2006.02.047

    Article  CAS  Google Scholar 

  18. C. He et al., Enhanced biodiesel production from diseased swine fat by ultrasound-assisted two-step catalyzed process. Bioresour. Technol. 304(December 2019), 123017 (2020). https://doi.org/10.1016/j.biortech.2020.123017

    Article  CAS  Google Scholar 

  19. X. Zhang, S. Yan, R.D. Tyagi, P. Drogui, R.Y. Surampalli, Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresour. Technol. 158, 253–261 (2014). https://doi.org/10.1016/j.biortech.2014.01.132

    Article  CAS  Google Scholar 

  20. P.B. Subhedar, P.R. Gogate, Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrason. Sonochem. 29, 67–75 (2016). https://doi.org/10.1016/j.ultsonch.2015.09.006

    Article  CAS  Google Scholar 

  21. S.P. Jeevan Kumar, R. Banerjee, Enhanced Lipid Extraction from Oleaginous Yeast Biomass Using Ultrasound Assisted Extraction: A Greener and Scalable Process, vol. 52 (Elsevier B.V., Amsterdam, 2019)

    Google Scholar 

  22. P. Kodgire, A. Sharma, S.S. Kachhwaha, Biodiesel production with enhanced fuel properties via appropriation of non-edible oil mixture using conjoint ultrasound and microwave reactor: process optimization and kinetic studies. Fuel Process. Technol. 230(October 2021), 107206 (2022). https://doi.org/10.1016/j.fuproc.2022.107206

    Article  CAS  Google Scholar 

  23. S. Kaul, J. Porwal, M.O. Garg, Parametric study of Jatropha seeds for biodiesel production by reactive extraction. J. Am. Oil Chem. Soc. 87(8), 903–908 (2010). https://doi.org/10.1007/s11746-010-1566-1

    Article  CAS  Google Scholar 

  24. S. Sulaiman, A.R. Abdul Aziz, M.K. Aroua, Reactive extraction of solid coconut waste to produce biodiesel. J. Taiwan Inst. Chem. Eng. 44(2), 233–238 (2013). https://doi.org/10.1016/j.jtice.2012.10.008

    Article  CAS  Google Scholar 

  25. E. Su, P. You, D. Wei, In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production. Bioresour. Technol. 100(23), 5813–5817 (2009). https://doi.org/10.1016/j.biortech.2009.06.077

    Article  CAS  Google Scholar 

  26. S.T. Al-Humairi, J.G.M. Lee, M. Salihu, A.P. Harvey, Biodiesel production through acid catalyst in situ reactive extraction of Chlorella vulgaris Foamate. Energies (2022). https://doi.org/10.3390/en15124482

    Article  Google Scholar 

  27. B. Mondal, A.K. Jana, Optimal reflux splitting reactive distillation for algal biodiesel production: waste heat recovery through vapor recompression and organic Rankine cycle. Sep. Purif. Technol. 292(January), 121007 (2022). https://doi.org/10.1016/j.seppur.2022.121007

    Article  CAS  Google Scholar 

  28. T.E. Odetoye, M.S. Abu Bakar, J.O. Titiloye, Pyrolysis and characterization of Jatropha curcas shell and seed coat. Niger. J. Technol. Dev. 16(2), 71 (2019). https://doi.org/10.4314/njtd.v16i2.4

    Article  Google Scholar 

  29. A. Ben Hassen-Trabelsi, T. Kraiem, S. Naoui, H. Belayouni, Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Waste Manag. 34(1), 210–218 (2014). https://doi.org/10.1016/j.wasman.2013.09.019

    Article  CAS  Google Scholar 

  30. S. Gupta, P. Patel, P. Mondal, Biofuels production from pine needles via pyrolysis: process parameters modeling and optimization through combined RSM and ANN based approach. Fuel 310(PA), 122230 (2022). https://doi.org/10.1016/j.fuel.2021.122230

    Article  CAS  Google Scholar 

  31. V. Lertsathapornsuk, R. Pairintra, K. Aryusuk, K. Krisnangkura, Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol. 89(12), 1330–1336 (2008). https://doi.org/10.1016/j.fuproc.2008.05.024

    Article  CAS  Google Scholar 

  32. S.P. Gouda, K. Ngaosuwan, S. Assabumrungrat, M. Selvaraj, G. Halder, S.L. Rokhum, Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst. Renew. Energy 197(June), 161–169 (2022). https://doi.org/10.1016/j.renene.2022.07.061

    Article  CAS  Google Scholar 

  33. S.A. El Sherbiny, A.A. Refaat, S.T. El Sheltawy, Production of biodiesel using the microwave technique. J. Adv. Res. 1(4), 309–314 (2010). https://doi.org/10.1016/j.jare.2010.07.003

    Article  Google Scholar 

  34. R.I. Ibrahim, A.H. Reja, A.J. Kadhim, Optimization process for biodiesel production from waste cooking of vegetable oil by microwave irradiation. Eng. Technol. J. 40(January 2021), 49–59 (2022)

    Article  Google Scholar 

  35. K. Thakkar, S.S. Kachhwaha, P. Kodgire, A novel approach for improved in-situ biodiesel production process from gamma-irradiated castor seeds using synergistic ultrasound and microwave irradiation: process optimization and kinetic study. Ind. Crops Prod. 181(March), 114750 (2022). https://doi.org/10.1016/j.indcrop.2022.114750

    Article  CAS  Google Scholar 

  36. G. Hincapié, F. Mondragón, D. López, Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel 90(4), 1618–1623 (2011). https://doi.org/10.1016/j.fuel.2011.01.027

    Article  CAS  Google Scholar 

  37. F.F.P. Santos, S. Rodrigues, F.A.N. Fernandes, Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process. Technol. 90(2), 312–316 (2009). https://doi.org/10.1016/j.fuproc.2008.09.010

    Article  CAS  Google Scholar 

  38. A. Ben Hassen Trabelsi, K. Zaafouri, W. Baghdadi, S. Naoui, A. Ouerghi, Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 126, 888–896 (2018). https://doi.org/10.1016/j.renene.2018.04.002

    Article  CAS  Google Scholar 

  39. S.F.M. Haghighi, P. Parvasi, S.M. Jokar, A. Basile, Investigating the effects of ultrasonic frequency and membrane technology on biodiesel production from chicken waste. Energies (2021). https://doi.org/10.3390/en14082133

    Article  Google Scholar 

  40. M. Aghababaie, M. Beheshti, A. Razmjou, A.K. Bordbar, Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. Renew. Energy 140, 104–110 (2019). https://doi.org/10.1016/j.renene.2019.03.069

    Article  CAS  Google Scholar 

  41. T. Nguyen, L. Do, D.A. Sabatini, Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions. Fuel 89(9), 2285–2291 (2010). https://doi.org/10.1016/j.fuel.2010.03.021

    Article  CAS  Google Scholar 

  42. I. Istadi, A.D. Yudhistira, D.D. Anggoro, L. Buchori, Electro-catalysis system for biodiesel synthesis from palm oil over dielectric-barrier discharge plasma reactor. Bull. Chem. React. Eng. Catal. 9(2), 111–120 (2014). https://doi.org/10.9767/bcrec.9.2.6090.111-120

    Article  CAS  Google Scholar 

  43. S. Wu, S. Deng, J. Zhu, M.A. Bashir, F. Izuno, Optimization of a novel liquid-phase plasma discharge process for continuous production of biodiesel. J. Clean. Prod. 228, 405–417 (2019). https://doi.org/10.1016/j.jclepro.2019.04.311

    Article  CAS  Google Scholar 

  44. K. Kusmiyati, A. Sugiharto, Production of biodiesel from oleic acid and methanol by reactive distillation. Bull. Chem. React. Eng. Catal. 5(1), 1–6 (2010). https://doi.org/10.9767/bcrec.5.1.37.1-6

    Article  CAS  Google Scholar 

  45. Z. Ilham, S. Saka, Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresour. Technol. 100(5), 1793–1796 (2009). https://doi.org/10.1016/j.biortech.2008.09.050

    Article  CAS  Google Scholar 

  46. N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, Production of biodiesel from palm oil under supercritical ethanol in the presence of ethyl acetate. Energy Fuels (2019). https://doi.org/10.1021/acs.energyfuels.9b00641

    Article  Google Scholar 

  47. H. He, T. Wang, S. Zhu, Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86(3), 442–447 (2007). https://doi.org/10.1016/j.fuel.2006.07.035

    Article  CAS  Google Scholar 

  48. K.S. Parthiban, S. Pandian, D. Subramanian, Conventional and in-situ transesterification of Annona squamosa seed oil for biodiesel production: performance and emission analysis. Environ. Technol. Innov. 23, 101593 (2021). https://doi.org/10.1016/j.eti.2021.101593

    Article  CAS  Google Scholar 

  49. P.D. Rocha, L.S. Oliveira, A.S. Franca, Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew. Energy 143, 1710–1716 (2019). https://doi.org/10.1016/j.renene.2019.05.070

    Article  CAS  Google Scholar 

  50. X. Zhang, C. Peterson, D. Reece, R. Haws, G. Möller, Biodegradability of biodiesel in the aquatic environment. Trans. ASAE 41(5), 1423 (1998)

    Article  CAS  Google Scholar 

  51. A. Budiman, R.D. Kusumaningtyas, S. Purwono, Second generation of biodiesel production from Indonesian jatropha oil by continuous reactive distillation process. AJChE 9(2), 35–48 (2009)

    Google Scholar 

  52. P. Wadood, T. Mohammed, Zirconium sulfate as catalyst for biodiesel production by using reactive distillation. J. Eng. 22(1), 68–82 (2016)

    Google Scholar 

  53. H.I. El Shimi, N.K. Attia, S.T. El Sheltawy, G.I. El Diwani, Reactive extraction processing of spirulina-platensis microalgae to produce biodiesel: kinetics study. Int. J. Eng. Sci. Innov. Technol. 4(1), 338–349 (2015)

    Google Scholar 

  54. I. Korkut, M. Bayramoglu, Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel 180, 624–629 (2016). https://doi.org/10.1016/j.fuel.2016.04.101

    Article  CAS  Google Scholar 

  55. J. Zhang et al., Biodiesel production through heterogeneous catalysis using a novel poly(phenylene sulfide) catalytic membrane. Energy Fuels 34(6), 7422–7429 (2020). https://doi.org/10.1021/acs.energyfuels.0c00522

    Article  CAS  Google Scholar 

  56. F. Goembira, S. Saka, Optimization of biodiesel production by supercritical methyl acetate. Bioresour. Technol. 131, 47–52 (2013). https://doi.org/10.1016/j.biortech.2012.12.130

    Article  CAS  Google Scholar 

  57. A. Demirbaş, Biodegradability of biodiesel and petrodiesel fuels. Energy Sources A 31(2), 169–174 (2009). https://doi.org/10.1080/15567030701521809

    Article  CAS  Google Scholar 

  58. A.P. Mariano, R.C. Tomasella, L.M. De Oliveira, J. Contiero, D.D.F. De Angelis, Biodegradability of diesel and biodiesel blends. Afr. J. Biotechnol. 7(9), 1323–1328 (2008)

    Google Scholar 

  59. M. Balat, Current alternative engine fuels. Energy Sources 27(6), 569–577 (2005). https://doi.org/10.1080/00908310490450458

    Article  CAS  Google Scholar 

  60. I. Yildiz, E. Açıkkalp, H. Caliskan, K. Mori, Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. J. Environ. Manag. 243(February), 218–226 (2019). https://doi.org/10.1016/j.jenvman.2019.05.002

    Article  CAS  Google Scholar 

  61. C.L. Peterson, D.L. Reece, Emissions testing with blends of esters of rapeseed oil fuel with and without a catalytic converter. SAE Tech. Pap. (1996). https://doi.org/10.4271/961114

    Article  Google Scholar 

  62. N. Yilmaz, T.M. Sanchez, Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends. Energy 46(1), 126–129 (2012). https://doi.org/10.1016/j.energy.2011.11.062

    Article  CAS  Google Scholar 

  63. M.N. Nabi, M.M.Z. Shahadat, M.S. Rahman, M.R. Alam Beg, Behavior of diesel combustion and exhaust emission with neat diesel fuel and diesel-biodiesel blends. SAE Tech. Pap. (2004). https://doi.org/10.4271/2004-01-3034

    Article  Google Scholar 

  64. M.S. Graboski, J.D. Ross, R.L. McCormick, Transient emissions from No. 2 diesel and biodiesel blends in a DDC series 60 engine. SAE Tech. Pap. (1996). https://doi.org/10.4271/961166

    Article  Google Scholar 

  65. X. Shi et al., Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine. Atmos. Environ. 40(14), 2567–2574 (2006). https://doi.org/10.1016/j.atmosenv.2005.12.026

    Article  CAS  Google Scholar 

  66. N. Yilmaz, Comparative analysis of biodiesel-ethanol-diesel and biodiesel-methanol-diesel blends in a diesel engine. Energy 40(1), 210–213 (2012). https://doi.org/10.1016/j.energy.2012.01.079

    Article  CAS  Google Scholar 

  67. K. Varatharajan, M. Cheralathan, Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: a review. Renew. Sustain. Energy Rev. 16(6), 3702–3710 (2012). https://doi.org/10.1016/j.rser.2012.03.056

    Article  CAS  Google Scholar 

  68. W.M. Adaileh, K.S. Alqdah, Performance of diesel engine fuelled by a biodiesel extracted from a waste cocking oil. Energy Procedia 18, 1317–1334 (2012). https://doi.org/10.1016/j.egypro.2012.05.149

    Article  CAS  Google Scholar 

  69. A.K. Agarwal, T. Gupta, A. Kothari, Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renew. Sustain. Energy Rev. 15(6), 3278–3300 (2011). https://doi.org/10.1016/j.rser.2011.04.002

    Article  CAS  Google Scholar 

  70. J.N. Gangwar, T. Gupta, A.K. Agarwal, Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine. Atmos. Environ. 46, 472–481 (2012). https://doi.org/10.1016/j.atmosenv.2011.09.007

    Article  CAS  Google Scholar 

  71. U.S. Umana, M.S. Ebong, E.O. Godwin, Biomass production from oil palm and its value chain. J. Hum Earth Future 1(1), 30–38 (2020). https://doi.org/10.28991/hef-2020-01-01-04

    Article  Google Scholar 

  72. G.M. Brito, M.B. Chicon, E.R.C. Coelho, D.N. Faria, J.C.C. Freitas, Eco-green biodiesel production from domestic waste cooking oil by transesterification using LiOH into basic catalysts mixtures. J. Renew. Sustain. Energy (2020). https://doi.org/10.1063/5.0005625

    Article  Google Scholar 

  73. R. Niculescu, A. Clenci, V. Iorga-Siman, Review on the use of diesel-biodiesel-alcohol blends in compression ignition engines. Energies 12(7), 1–41 (2019). https://doi.org/10.3390/en12071194

    Article  CAS  Google Scholar 

  74. M.B. Haider, P. Maheshwari, R. Kumar, CO2 capture from flue gas using phosphonium based deep eutectic solvents: modeling and simulation approach. J. Environ. Chem. Eng. 9(6), 106727 (2021). https://doi.org/10.1016/j.jece.2021.106727

    Article  CAS  Google Scholar 

Download references

Funding

The present study received no financial grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi Krishna Kudapa.

Ethics declarations

Conflict of interest

As this manuscript is prepared collectively, there is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharia, P., Saini, R. & Kudapa, V.K. A study on various sources and technologies for production of biodiesel and its efficiency. MRS Energy & Sustainability 10, 35–51 (2023). https://doi.org/10.1557/s43581-022-00058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-022-00058-4

Keywords

Navigation