Skip to main content
Log in

Evaluation of biological activity for gadolinium-incorporated zinc oxide nanostructures via hydrothermal method

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this study, we have evaluated the biological activity of gadolinium-incorporated zinc oxide (Gd-ZnO) nanostructures prepared via a hydrothermal synthesis route. Various characterization techniques, such as powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Ultraviolet–Visible (UV–Vis), Dynamic light scattering (DLS), and scanning electron microscope (SEM) are employed to examine the physicochemical characterization of the Gd-ZnO nanostructures. Powder XRD analysis confirmed the wurtzite hexagonal crystal structure. The FTIR bands indicated the characteristic functional groups of Gd and Zn–O, confirming the formation of Gd-ZnO. Furthermore, the antibacterial activity against gram-negative E. coli and gram-positive S. aureus and anticancer activity against A549 cancer cells have been conducted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. L. Zhou et al., Functional DNA-based hydrogel intelligent materials for biomedical applications. J. Mater. Chem. B 8(10), 1991–2009 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. S. Abeer, Future medicine: Nanomedicine. JIMSA 25(3), 187–192 (2012)

    Google Scholar 

  3. J. Barman et al., The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications. Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.104055

    Article  Google Scholar 

  4. E. Omanović-Mikličanin, M. Maksimović, V. Vujović, The future of healthcare: Nanomedicine and internet of nano things. Folia Medica FacultatisMedicinae Universitatis Saraeviensis 50(1), 23–28 (2015)

    Google Scholar 

  5. S. Kai, S. Xiaomeng, W. Zhao, F. Ai, A. Umar, S. Baskoutas, Functional inorganic nanomaterials for optical cancer theranostics. Chem. Eng. J. (2024). https://doi.org/10.1016/j.cej.2024.150067

    Article  Google Scholar 

  6. K. Khan et al., Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 9(46), 9461–9484 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. A. Mansour, M. Romani, A.B. Acharya, B. Rahman, E. Verron, Z. Badran, Drug delivery systems in regenerative medicine: An updated review. Pharmaceutics (2023). https://doi.org/10.3390/pharmaceutics15020695

    Article  PubMed  PubMed Central  Google Scholar 

  8. P.Q. Nguyen et al., Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. (2018). https://doi.org/10.1002/adma.201704847

    Article  PubMed  PubMed Central  Google Scholar 

  9. Q. Sun et al., Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. (2017). https://doi.org/10.1002/adma.201606628

    Article  PubMed  Google Scholar 

  10. V.K. Varadan, L. Chen, J. Xie, Nanomedicine: Design and applications of magnetic nanomaterials, nanosensors and nanosystems (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  11. S. Sagadevan, S. Imteyaz, B. Murugan, J. Anita Lett, N. Sridewi, G.K. Weldegebrieal, Is. Fatimah, W.C. Oh, A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process. Synth. 11(1), 44–63 (2022)

    Article  CAS  Google Scholar 

  12. A. Fatima, M.W. Ahmad, A.K.A. Al Saidi, A. Choudhury, Y. Chang, G.H. Lee, Recent advances in Gadolinium based contrast agents for bioimaging applications. Nanomaterials (Basel) 11(9), 2449 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. M. Joglekar, B.G. Trewyn, Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J.. J. 8(8), 931–945 (2013)

    Article  CAS  Google Scholar 

  14. H.J. Kwon et al., Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv. Mater. 30(42), 1704290 (2018)

    Article  Google Scholar 

  15. M. Murar, L. Albertazzi, S. Pujals, Advanced optical imaging-guided nanotheranostics towards personalized cancer drug delivery. Nanomaterials 12(3), 399 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A.K. Mandal et al., Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials 12(17), 3066 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Carofiglio et al., Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10(15), 5194 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. K. Pradeev Raj et al., Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. Res. Lett. 13, 1–13 (2018)

    CAS  Google Scholar 

  19. S. Barui, R. Gerbaldo, N. Garino, R. Brescia, F. Laviano, V. Cauda, Facile chemical synthesis of doped ZnO nanocrystals exploiting oleic acid. Nanomaterials 10(6), 1150 (2020). https://doi.org/10.3390/nano10061150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. Yu, C. Eich, L.J. Cruz, Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front. Chem. 8, 1–10 (2020). https://doi.org/10.3389/fchem.2020.00496

    Article  CAS  Google Scholar 

  21. C. Bouzigues, T. Gacoin, A. Alexandrou, Biological applications of rare-earth based nanoparticles. ACS Nano 5, 8488–8505 (2011). https://doi.org/10.1021/nn202378b

    Article  CAS  PubMed  Google Scholar 

  22. H. Li, R. Wei, G.-H. Yan, J. Sun, C. Li, H. Wang, L. Shi, J.A. Capobianco, L. Sun, Smart self-assembled nanosystem based on water-soluble pillararene and rareearth-doped upconversion nanoparticles for pH-responsive drug delivery. ACS Appl. Mater. Interfaces 10, 4910–4920 (2018). https://doi.org/10.1021/acsami.7b14193

    Article  CAS  PubMed  Google Scholar 

  23. L. Qi, Y. Ge, T. Xia, J.Z. He, C. Shen, J. Wang, Y.J. Liu, Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environ. Sci. NanoNano 6(2), 456–466 (2019). https://doi.org/10.1039/c8en01129j

    Article  CAS  Google Scholar 

  24. S. Radhakrishnan, S. Nagarajan, H. Belaid, C. Farha, I. Iatsunskyi, E. Coy, L. Soussan, V. Huon, J. Bares, K. Belkacemi, C. Teyssier, S. Balme, P. Miele, D. Cornu, N. Kalkura, V. Cavaill`es, M. Bechelany, Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Mater. Sci. Eng. C 118, 111525 (2021). https://doi.org/10.1016/j.msec.2020.111525

    Article  CAS  Google Scholar 

  25. Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32, 1185–1192 (2011). https://doi.org/10.1016/j.biomaterials.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  26. M. Isik, N.M. Gasanly, Gd-doped ZnO nanoparticles: Synthesis, structural and thermoluminescence properties. J. Lumin.Lumin. 207, 220–222 (2019)

    Article  CAS  Google Scholar 

  27. J.L. Mejía-Méndez, D.E. Navarro-López, A. Sanchez-Martinez, O. Ceballos-Sanchez, L.E. Garcia-Amezquita, N. Tiwari, E.R. López-Mena, Lanthanide-Doped ZnO nanoparticles: Unraveling their role in cytotoxicity, antioxidant capacity, and nanotoxicology. Antioxidants 13(2), 213 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

  28. K.P. Shinde et al., Study of effect of planetary ball milling on ZnO nanopowder synthesized by co-precipitation. J. Alloy. Compd. 617, 404–407 (2014)

    Article  CAS  Google Scholar 

  29. K.P. Raj, K. Sadayandi, Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Phys. B: Condens. Matter 487, 1–7 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author A. Subashini thank the Management, Principal, and Faculty members of Velammal Institute of Technology, Chennai-601 204, India, for their constant encouragement and support throughout this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A. Subashini: Conceptualization, Methodology, Formal analysis, Data curation and original draft preparation. Suresh Sagadevan: Conceptualization, Methodology, Formal analysis, Data curation, Visualization, Validation, Reviewing, and Editing. Is Fatimah: Formal analysis, Data curation, Visualization, and Validation. J. Anita Lett: Methodology, Formal analysis, Data curation, Visualization, Validation. Maghimaa Mathanmohun: Data curation, Visualization, and Validation. Faruq Mohammad: Methodology, Formal analysis, Data curation, Visualization, Validation. Mohammed A. Al-Anber: Formal analysis, Data curation, and Validation.

Corresponding author

Correspondence to Suresh Sagadevan.

Ethics declarations

Conflict of interest

All authors declare that there are no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subashini, A., Sagadevan, S., Fatimah, I. et al. Evaluation of biological activity for gadolinium-incorporated zinc oxide nanostructures via hydrothermal method. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00863-8

Navigation