Skip to main content
Log in

Synthesis and characterization of Ag–ZrO2-BG/PMMA scaffolds for tissue engineering applications

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this work, the hybridization of bioactive glass (BG) particles with ZrO2 and silver nanoparticles (AgNP) by the sol–gel method was performed. Methyl meta-acrylate was polymerized to obtain polymethyl meta-acrylate (PMMA) by free radical polymerization to obtain novel bioactive 3D scaffolds by solvent-casting and gel-pressing technique. Results shown an average size around 40 µm of the AgNP/ZrO2−BG particles with homogeneous morphology and porous composite scaffolds. In order to achieve the aims of this study, the microstructure and morphology of the obtained scaffolds were characterized by FTIR, XRD and SEM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. B.C.J. Vander Eerden, A. Teti, W.F. Zambuzzi, Arch. Biochem. Biophys. (2014). https://doi.org/10.1016/j.abb.2014.08.012

    Article  Google Scholar 

  2. R. Bartl, C. Bartl, Structure and architecture of bone, in Bone disorders. (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-29182-6_2

    Chapter  Google Scholar 

  3. Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31, 7 (2011). https://doi.org/10.1016/j.msec.2011.04.022

    Article  CAS  Google Scholar 

  4. C. Ruiz-Aguilar, E.A. Aguilar-Reyes, U. Olivares-Pinto, Boletín de la Sociedad Española de Cerámica y Vidrio (2019). https://doi.org/10.1016/j.bsecv.2019.06.006

    Article  Google Scholar 

  5. C.J. Costa-Fernandes, M. Rodrigues-Ferreira, F.J.B. Bezerra, W.F. Zambuzzi, J. Mater. Sci. - Mater. Med. 29, 41 (2018). https://doi.org/10.1007/s10856-018-6041-9

    Article  CAS  Google Scholar 

  6. L.A. Bicalho, C.A.R.P. Baptista, E.C. Souza, C. Santos, K. Strecker, M.J.R. Barboza, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.08.093

    Article  Google Scholar 

  7. V.V. Rodaev, A.O. Zhigachev, A.I. Tyurin, S.S. Razlivalova, V. Korenkov, Y.I. Golovin, Materials (2021). https://doi.org/10.3390/ma14164676

    Article  Google Scholar 

  8. N. Zhang, A. Zaeem, Eur. J. Mech.-A/Solids (2019). https://doi.org/10.1016/j.euromechsol.2019.03.015

    Article  Google Scholar 

  9. S.M. Rabiee, N. Nazparvar, M. Azizian, D. Vashaee, L. Tayebi, Ceram. Int. 41, 6 (2015). https://doi.org/10.1016/j.ceramint.2015.02.140

    Article  CAS  Google Scholar 

  10. M. Khan, M.R. Shaik, S.T. Khan, S.F. Adil, M. Kuniyil, M. Khan, A.A. Al-Warthan, M.R.H. Siddiqui, M.N. Tahir, ACS Omega 5, 1987–1996 (2020). https://doi.org/10.1021/acsomega.9b03840

    Article  CAS  Google Scholar 

  11. E. Seebach, K.F. Kubatzky, Front. Immun. (2019). https://doi.org/10.3389/fimmu.2019.01724

    Article  Google Scholar 

  12. G. Hu, W. Jin, Q. Chen, Y. Cai, Q. Zhu, W. Zhang, Appl. Phys. A Mater. Sci. Process. 122, 874 (2016). https://doi.org/10.1007/s00339-016-0395-y

    Article  CAS  Google Scholar 

  13. M. Fabritius, A.A. Al-Munajjed, C. Freytag, H. Jülke, M. Zehe, T. Lemarchand, J.J. Arts, D. Schumann, V. Alt, K. Sternberg, Materials 13(6), 1415 (2020). https://doi.org/10.3390/ma13061415

    Article  CAS  Google Scholar 

  14. S.A. Brennan, C. Ní Fhoghlú, B.M. Devitt, F.J. O’Mahony, D. Brabazon, A. Walsh, Bone Joint J. 97, 15 (2015). https://doi.org/10.1302/0301-620X.97B5.33336

    Article  Google Scholar 

  15. B.R. Spirandeli, T.M. Bastos-Campos, R.G. Ribas, G.P. Thim, E. Trichês, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.108

    Article  Google Scholar 

  16. A. Motealleh, S. Eqtesadi, A. Pajares, P. Miranda, J. Mech. Behav. Biomed. Mater. (2018). https://doi.org/10.1016/j.jmbbm.2018.04.022

    Article  Google Scholar 

  17. V. Wall, T. Nguyen, N. Nguyen, P. Tran, Biomedicines 9, 26 (2021). https://doi.org/10.3390/biomedicines9010026

    Article  CAS  Google Scholar 

  18. C. Rameshkumar, S. Sarojini, K. Naresh, R. Subalakshmi, J. Surf. Sci. Technol. 33, 2 (2017). https://doi.org/10.18311/jsst/2017/6215

    Article  CAS  Google Scholar 

  19. S. Jayakumar, P.V. Ananthapadmanabhan, K. Perumal, T.K. Thiyagarajan, S.C. Mishra, L.T. Su, A.I.Y. Tok, J. Guo, Mater. Sci. Eng. B (2011). https://doi.org/10.1016/j.mseb.2011.05.013

    Article  Google Scholar 

  20. N.N. Zurita-Méndez, G. Carbajal-De la Torre, M.V. Flores-Merino, M.A. Espinosa-Medina, Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.825903

    Article  Google Scholar 

  21. D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra, Ceram. Int. (2007). https://doi.org/10.1016/j.ceramint.2006.05.002

    Article  Google Scholar 

  22. P. Devaraj, P. Kumari, C. Aarti, A. Renganathan, J. Nanotechnol. (2013). https://doi.org/10.1155/2013/598328

    Article  Google Scholar 

  23. X.V. Bui, T.H. Dang, Process. Appl. Ceram. 13, 1 (2019). https://doi.org/10.2298/PAC1901098B

    Article  Google Scholar 

  24. S.C. Endres, L.C. Ciacchi, L. Mädler, J. Aerosol Sci. (2021). https://doi.org/10.1016/j.jaerosci.2020.105719

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the given support of the Material Degradation Laboratory from the Mechanical Engineering Faculty (UMSNH) for the research development.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NNZ-M, GC-DelT, JO-O, MLB-A and MAE-M. The first draft of the manuscript was written by NNZ-M and GC-DlT, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. A. Espinosa-Medina.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurita-Mendez, N.N., la Torre, G.CD., Ortiz-Ortiz, J. et al. Synthesis and characterization of Ag–ZrO2-BG/PMMA scaffolds for tissue engineering applications. MRS Advances 8, 1450–1454 (2023). https://doi.org/10.1557/s43580-023-00725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00725-9

Navigation