G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50(2), 656–663 (2011)
CAS
Google Scholar
Y. Liu, T. Zhao, J. Wangwei, S. Shi, Materials discovery and design using machine learning. J. Materiomics 3(3), 159–177 (2017)
Google Scholar
E.V. Podryabinkin, E.V. Tikhonov, A.V. Shapeev, A.R. Oganov, Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99(6), 064114 (2019)
CAS
Google Scholar
Y.X. Zuo, C. Chen, X.G. Li, Z. Deng, Y.M. Chen, J. Behler, G. Csanyi, A.V. Shapeev, A.P. Thompson, M.A. Wood, Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124(4), 731–745 (2020)
CAS
Google Scholar
J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)
Google Scholar
T. Mueller, A.G. Kusne, R. Ramprasad, Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 29, 186–273 (2016)
CAS
Google Scholar
M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning (MIT Press, Cambridge, 2018)
Google Scholar
V. Botu, R. Batra, J. Chapman, R. Ramprasad, Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121(1), 511–522 (2017)
CAS
Google Scholar
V.L. Deringer, M.A. Caro, G. Csányi, Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31(46), 1902765 (2019)
CAS
Google Scholar
A.V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14(3), 1153–1173 (2016)
Google Scholar
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 3(1), 1–13 (2017)
Google Scholar
K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties: Locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)
Google Scholar
S. Zhao, E.N. Hahn, B. Kad, B.A. Remington, C.E. Wehrenberg, E.M. Bringa, M.A. Meyers, Amorphization and nanocrystallization of silicon under shock compression. Acta Mater. 103, 519–533 (2016)
CAS
Google Scholar
K. Persson, Materials data on sio2 (sg:15) by materials project, 11 2014. An optional note
M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo, The aflow library of crystallographic prototypes: Part 1. Comput. Mater. Sci. 136, S1–S828 (2017)
CAS
Google Scholar
D. Hicks, M.J. Mehl, E. Gossett, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo, The aflow library of crystallographic prototypes: Part 2. Comput. Mater. Sci. 161, S1–S1011 (2019)
CAS
Google Scholar
O.B. Gadzhiev, S.K. Ignatov, M.Y. Kulikov, A.M. Feigin, A.G. Razuvaev, P.G. Sennikov, O. Schrems, Structure, energy, and vibrational frequencies of oxygen allotropes o n (n 6) in the covalently bound and van der waals forms: Ab initio study at the ccsd (t) level. J. Chem. Theory Comput. 9(1), 247–262 (2013)
CAS
Google Scholar
R.T. Downs, M. Hall-Wallace, The American mineralogist crystal structure database. Am. Miner. 88(1), 247–250 (2003)
CAS
Google Scholar
H. Zheng, X.-G. Li, R. Tran, C. Chen, M. Horton, D. Winston, K.A. Persson, S.P. Ong, Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020)
CAS
Google Scholar
R. Tran, X. Zihan, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong, Surface energies of elemental crystals. Sci. Data 3(1), 1–13 (2016)
Google Scholar
B.-J. Lee, A modified embedded atom method interatomic potential for silicon. Calphad 31(1), 95–104 (2007)
CAS
Google Scholar
C. Li, C. Wang, J. Han, L. Yan, B. Deng, X. Liu, A comprehensive study of the high-pressure-temperature phase diagram of silicon. J. Mater. Sci. 53(10), 7475–7485 (2018)
CAS
Google Scholar
J. Crain, S.J. Clark, G.J. Ackland, M.C. Payne, V. Milman, P.D. Hatton, B.J. Reid, Theoretical study of high-density phases of covalent semiconductors. i. ab initio treatment. Phys. Rev. B 49(8), 5329 (1994)
CAS
Google Scholar
M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S.V. Der Zwaag, J.J. Plata, Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2(1), 1–13 (2015)
Google Scholar
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253 (2014)
Google Scholar
E. Clouet, Ab initio models of dislocations. Handbook of Materials Modeling: Methods: Theory and Modeling, pp. 1503–1524 (2020)
A. Goyal, Y. Li, A. Chernatynskiy, J.S. Jayashankar, M.C. Kautzky, S.B. Sinnott, S.R. Phillpot, The influence of alloying on the stacking fault energy of gold from density functional theory calculations. Comput. Mater. Sci. 188, 110236 (2021)
CAS
Google Scholar
P.J.H. Denteneer, W. Van Haeringen, Stacking-fault energies in semiconductors from first-principles calculations. J. Phys. C 20(32), L883 (1987)
Google Scholar
F.-Y. Tian, N.-X. Chen, L. Delczeg, L. Vitos, Interlayer potentials for fcc (1 1 1) planes of Pd–Ag random alloys. Comput. Mater. Sci. 63, 20–27 (2012)
CAS
Google Scholar
W. Li, L. Song, H. Qing-Miao, S.K. Kwon, B. Johansson, L. Vitos, Generalized stacking fault energies of alloys. J. Phys. 26(26), 265005 (2014)
Google Scholar
Y.-M. Juan, E. Kaxiras, Generalized stacking fault energy surfaces and dislocation properties of silicon: A first-principles theoretical study. Philos. Mag. A 74(6), 1367–1384 (1996)
CAS
Google Scholar
W. Sun, G. Ceder, Efficient creation and convergence of surface slabs. Surf. Sci. 617, 53–59 (2013)
CAS
Google Scholar
D. Sholl, J.A. Steckel, Density Functional Theory: A Practical Introduction (Wiley, Hoboken, 2011)
Google Scholar
A. Ghoufi, P. Malfreyt, D.J. Tildesley, Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem. Soc. Rev. 45(5), 1387–1409 (2016)
CAS
Google Scholar
J.-C. Neyt, A. Wender, V. Lachet, P. Malfreyt, Prediction of the temperature dependence of the surface tension of so2, n2, o2, and ar by Monte Carlo molecular simulations. J. Phys. Chem. B 115(30), 9421–9430 (2011)
CAS
Google Scholar
P. Geysermans, D. Gorse, V. Pontikis, Molecular dynamics study of the solid–liquid interface. J. Chem. Phys. 113(15), 6382–6389 (2000)
CAS
Google Scholar
R. Šolc, M.H. Gerzabek, H. Lischka, D. Tunega, Wettability of kaolinite (001) surfaces-molecular dynamic study. Geoderma 169, 47–54 (2011)
Google Scholar
G. Ulian, D. Moro, G. Valdrè, Dft simulation of the water molecule interaction with the (00l) surface of montmorillonite. Minerals 11(5), 501 (2021)
CAS
Google Scholar
Z. Liang, W. Evans, P. Keblinski, Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid–gas interfaces. Phys. Rev. E 87(2), 022119 (2013)
Google Scholar
F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)
CAS
Google Scholar
J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991 (1988)
CAS
Google Scholar
G.T. Barkema, N. Mousseau, High-quality continuous random networks. Phys. Rev. B 62(8), 4985 (2000)
CAS
Google Scholar
V.L. Deringer, N. Bernstein, A.P. Bartók, M.J. Cliffe, R.N. Kerber, L.E. Marbella, C.P. Grey, S.R. Elliott, G. Csányi, Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J Phys Chem Lett 9(11), 2879–2885 (2018)
CAS
Google Scholar
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. 21(39), 395502 (2009)
Google Scholar
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)
Google Scholar
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)
CAS
Google Scholar
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)
Google Scholar
I.S. Novikov, K. Gubaev, E. Podryabinkin, A.V. Shapeev, The MLIP package: Moment tensor potentials with MPI and active learning. Mach. Learn. 2, 025002 (2020)
Google Scholar
B. Mortazavi, E.V. Podryabinkin, S. Roche, T. Rabczuk, X. Zhuang, A.V. Shapeev, Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater. Horiz. 7(9), 2359–2367 (2020)
Google Scholar
A. Lomaka, T. Tamm, Linearization of moment tensor potentials for multicomponent systems with a preliminary assessment for short-range interaction energy in water dimer and trimer. J. Chem. Phys. 152(16), 164115 (2020)
CAS
Google Scholar
I.S. Novikov, Y.V. Suleimanov, A.V. Shapeev, Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning. Phys. Chem. Chem. Phys. 20(46), 29503–29512 (2018)
CAS
Google Scholar
K. Gubaev, E.V. Podryabinkin, G.L.W. Hart, A.V. Shapeev, Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019)
CAS
Google Scholar
I.I. Novoselov, A.V. Yanilkin, A.V. Shapeev, E.V. Podryabinkin, Moment tensor potentials as a promising tool to study diffusion processes. Comput. Mater. Sci. 164, 46–56 (2019)
CAS
Google Scholar
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018)
CAS
Google Scholar
J.F. Cannon, Behavior of the elements at high pressures. J. Phys. Chem. Ref. Data 3(3), 781–824 (1974)
CAS
Google Scholar
H. Jing Zhu, L.D. Merkle, C.S. Menoni, I.L. Spain, Crystal data for high-pressure phases of silicon. Phys. Rev. B 34(7), 4679 (1986)
Google Scholar
K. Zongo, L. K Béland, C. Ouellet-Plamondon, Improving atom-scale models of clay minerals using machine learning. Can. Nuclear Soc. (2021)
A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8(4), 041048 (2018)
Google Scholar
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)
CAS
Google Scholar
G.S. Hwang, W.A. Goddard III., Diffusion and dissociation of neutral divacancies in crystalline silicon. Phys. Rev. B 65(23), 233205 (2002)
Google Scholar
D. YaojunA, S.A. Barr, K.R.A. Hazzard, T.J. Lenosky, R.G. Hennig, J.W. Wilkins, Fast diffusion mechanism of silicon tri-interstitial defects. Phys. Rev. B 72(24), 241306 (2005)
Google Scholar
F. El-Mellouhi, N. Mousseau, P. Ordejón, Sampling the diffusion paths of a neutral vacancy in silicon with quantum mechanical calculations. Phys. Rev. B 70(20), 205202 (2004)
Google Scholar