Skip to main content
Log in

Hybrid nanoparticles consisting of magnetic iron oxide and gold nanoparticles modified with Arabic gum

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Were synthesized hybrids nanoparticles consisting of an iron oxide nucleus and coatings of Gum Arabic (GA) and gold nanoparticles. Taking advantage of the GA, it has the function of stabilizing the iron oxide nanoparticles and protecting the surface from oxidation. Also, they have the function of reducing metals such as gold; so, in situ synthesis of gold nanoparticles was carried out to obtain the hybrid composed of iron oxide nanoparticles with GA and gold. The aim is to take advantage of the photothermal (PTT) properties of gold and the magnetic properties of iron oxide to obtain a material that works for a dual therapy: photothermal and magnetic hyperthermia (MHT) for cancer treatment. The structural, morphological, and magnetic characterization of the hybrid nanoparticles was obtained. The presence of gold nanoparticles was confirmed by X-ray diffraction: the hybrid diffraction patterns show the peaks corresponding to the NP–Au; also, the TEM images show a crystal size of 12 nm. The colloidal stability increment with the presence of gold nanoparticles obtained a zeta potential value of 21 mV. The magnetization saturation for hybrids was 47 emu/g and a blocking temperature was 336 K. These results manifest that MNP–GA–Au could be a promising alternative for dual treatment, PTT and MHT for cancer treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 130, 28–29 (2008)

    Article  CAS  Google Scholar 

  2. J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater. 3, 891–895 (2004)

    Article  CAS  Google Scholar 

  3. A.P. Zhu, L.H. Yuan, S. Dai, J. Phys. Chem. C 112, 5432–5438 (2008)

    Article  CAS  Google Scholar 

  4. K.L. Hultman, A.J. Raffo, A.L. Grzenda, P.E. Harris, T.R. Brown, S. O’Brien, ACS Nano 2, 477–484 (2008)

    Article  CAS  Google Scholar 

  5. Gu, H. W.; Xu, K. M.; Xu, C. J.; Xu, B. Chem. Commun. 2006, 941–949.

  6. M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, J. Phys. Chem. B 112, 14470–14481 (2008)

    Article  CAS  Google Scholar 

  7. M. Babiĉ, D. Horák, M. Trchová, P. Jendelová, K.I. Glogarová, P. Lesný, V. Herynek, M. Hájek, E. Syková, Bioconjugate Chem. 19, 740–750 (2008)

    Article  Google Scholar 

  8. Wu. Wei et al., Sci. Technol. Adv. Mater. 16, 023501 (2015)

    Article  Google Scholar 

  9. X.M. Qian, X. Zhou, S.M. Nie, J. Am. Chem. Soc. 130, 14934–14935 (2008)

    Article  Google Scholar 

  10. X.M. Qian, S.M. Nie, Chem. Soc. Rev. 37, 912–920 (2008)

    Article  CAS  Google Scholar 

  11. S.C.N. Tang, I.M.C. Lo, Water Res. 47, 2613–2632 (2013). https://doi.org/10.1016/j.watres.2013.02.039

    Article  CAS  Google Scholar 

  12. D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia, J.T. Tang, J. Alloys Compd. 477, 739–743 (2009). https://doi.org/10.1016/j.jallcom.2008.10.104

    Article  CAS  Google Scholar 

  13. S.L. Saville, B. Qi, J. Baker, R. Stone, R.E. Camley, K.L. Livesey, L. Ye, T.M. Crawford, O. ThompsonMefford, J. Colloid Interface Sci. 424, 141–151 (2014). https://doi.org/10.1016/j.jcis.2014.03.007

    Article  CAS  Google Scholar 

  14. A.M.G.C. Dias, A. Hussain, A.S. Marcos, A.C.A. Roque, Biotechnol. Adv. 29, 142–155 (2011). https://doi.org/10.1016/j.biotechadv.2010.10.003

    Article  CAS  Google Scholar 

  15. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  16. R. Hergt, S. Dutz, R. Muller, M. Zeisberger, J Phys Condensed Matter 18, S2919–S2934 (2006)

    Article  CAS  Google Scholar 

  17. S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chem. Eng. J. 330, 44–62 (2017)

    Article  Google Scholar 

  18. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Chem. Soc. Rev. 44, 6330–6374 (2015)

    Article  CAS  Google Scholar 

  19. J. Kolosnjaj-Tabi, I. Marangon, A. Nicolas-Boluda, A.K. Silva, F. Gazeau, Pharmacol. Res. 126, 123–137 (2017)

    Article  CAS  Google Scholar 

  20. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002)

    Article  CAS  Google Scholar 

  21. R. Hergt, S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007)

    Article  CAS  Google Scholar 

  22. M. Danaei, M. Dehghankhold, S. Ataei, F. HasanzadehDavarani, R. Javanmard, A. Dokhani, Pharmaceutics 10, 57 (2018). https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  Google Scholar 

  23. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)

    Article  CAS  Google Scholar 

  24. P.M. Paulus, H.B. Pnnemann, A.M. van der Kraan, F. Luis, J. Sinzig, L.J. de Jongh, Eur. Phys. J. D 9, 501 (1999)

    Article  CAS  Google Scholar 

  25. F. Schth et al., Angew. Chem. Int. Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Guanajuato University for the partial support in this research under Grant DAIP-2021/59023 and Ma. Lourdes Palma Tirado of INB-UNAM Campus Juriquilla for his support in the processing of images by TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Guzmán-Rocha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Rocha, D., Córdova-Fraga, T., Bernal-Alvarado, J. et al. Hybrid nanoparticles consisting of magnetic iron oxide and gold nanoparticles modified with Arabic gum. MRS Advances 7, 5–11 (2022). https://doi.org/10.1557/s43580-021-00195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00195-x

Navigation