Skip to main content

Advertisement

Log in

Transparent and conductive F-Doped SnO2 nanostructured thin films by sequential nebulizer spray pyrolysis

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Transparent conductive oxides (TCOs) are a key component in many optoelectronic applications such as solar cells, flat panel displays, sensors, touch screens, light-emitting diodes, frost-resistant surfaces, and smart windows. The high electronic conductivity and high optical transmission are essential properties of TCOs for these applications. Owing to chemical inertness and high-temperature tolerance, F-doped tin oxide (FTO) films have much demand in a variety of electrochemical devices. In this work, transparent and electrically conductive FTO thin films are prepared on soda-lime glass substrates. The films are fabricated by sequential nebulized spray pyrolysis with the help of a homemade low-cost spray gun. The surface morphology of the films is analyzed using scanning electron micrographs (SEMs). It is found that the surface is homogeneous and FTO crystallite sizes are in the order of ~ 10 nm. XRD pattern of the FTO films exhibits 2θ peaks for corresponding SnO2 crystal planes at 26.64° (110), 33.90° (101), 37.95° (200), 51.87° (211), 56.17° (200), 60.05° (310), 61.89° (301). The crystallite sizes calculated from XRD data are in agreement with that of SEM. Optical transparency and bandgap energies are evaluated by UV visible spectroscopy. The FTO films with 15 Ω cm−2 sheet resistance were used to prepare quasi-solid-state dye-sensitized solar cells with a TiO2 photoelectrode. The solar cell showed a ~ 5% energy conversion efficiency with high short-term stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. D. Solís-Cortés, R. Schrebler, E. Navarrete-Astorga, M. López-Escalante, F. Martín, J.R. Ramos-Barrado, E.A. Dalchiele, J. Alloys Compd. 808, 151776 (2019). https://doi.org/10.1016/j.jallcom.2019.151776

    Article  CAS  Google Scholar 

  2. T. Minami, MRS Bull. 25, 38–44 (2000)

    Article  CAS  Google Scholar 

  3. B. Han et al., Adv. Mater. 26(6), 873–877 (2014). https://doi.org/10.1002/adma.201302950

    Article  CAS  Google Scholar 

  4. A.C. Zhou, ACS Nano 4(1), 11–14 (2010). https://doi.org/10.1021/nn901903b

    Article  CAS  Google Scholar 

  5. S. Abdullahi, A.U. Moreh, B. Hamza, U. Sadiya, Z. Abdullahi, M.A. Wara, H. Kamaluddeen, M.A. Kebbe, U.F. Monsurat, IJIAS. 9, 947–955 (2014)

    Google Scholar 

  6. L. Dominici, F. Michelotti, T.M. Brown et al., Opt. Express 17(12), 10155–10167 (2009). https://doi.org/10.1364/OE.17.010155

    Article  CAS  Google Scholar 

  7. S.-W. Feng, Y.-H. Wang, C.-Y. Tsai, T.-H. Cheng, H.-C. Wang, Sci. Rep. 10(1), 1–8 (2020). https://doi.org/10.1038/s41598-020-67274-1

    Article  CAS  Google Scholar 

  8. T. Minami, Semicond. Sci. Technol. 20(4), S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  CAS  Google Scholar 

  9. Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, H. Cheng, Langmuir 29(45), 13836–13842 (2013). https://doi.org/10.1021/la4033282

    Article  CAS  Google Scholar 

  10. L.H. Lalasari, T. Arini, L. Andriyah, F. Firdiyono, A.H. Yuwono, AIP Conf. Proc. 1964(1), 020001 (2018). https://doi.org/10.1063/1.5038283

    Article  CAS  Google Scholar 

  11. T. Dhakal et al., Sol. Energy 86(5), 1306–1312 (2012). https://doi.org/10.1016/j.solener.2012.01.022

    Article  CAS  Google Scholar 

  12. S. Sarker, H.W. Seo, Y.K. Jin, M.A. Aziz, D.M. Kim, Mater. Sci. Semicond. Process. 93, 28–35 (2019). https://doi.org/10.1016/j.mssp.2018.12.023

    Article  CAS  Google Scholar 

  13. B. Russo, G.Z. Cao, Appl. Phys. A. 90(2), 311–315 (2008). https://doi.org/10.1007/s00339-007-4274-4

    Article  CAS  Google Scholar 

  14. D. Keller, H. Barad, E. Rosh-Hodesh, A. Zaban, D. Cahen, MRS Commun. 8(3), 1358–1362 (2018). https://doi.org/10.1557/mrc.2018.179

    Article  CAS  Google Scholar 

  15. A. Purwanto, H. Widiyandari, A. Jumari, Thin Solid Films 520(6), 2092–2095 (2012). https://doi.org/10.1016/j.tsf.2011.08.041

    Article  CAS  Google Scholar 

  16. N.S. Khalid, W. Zaki, W. Suhaimizan, M.K. Bin Ahmad, Adv. Mater. Res. 1109, 11–14 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1109.11

    Article  Google Scholar 

  17. S. Saehana, Z. Arifin, Nasar, IOP Conf. Ser. Mater. Sci. Eng. 622(1), 012032 (2019). https://doi.org/10.1088/1757-899X/622/1/012032

  18. T.M.W.J. Bandara, L. DeSilva, J. Ratnasekera, K. Hettiarachchi, A. Wijerathna, M. Thakurdesai, J. Preston, I. Albinsson, B. Mellander, Renew. Sust. Energ. Rev. 103, 282–290 (2019). https://doi.org/10.1016/j.rser.2018.12.052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. W. J. Bandara.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or no conflicts of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T.M.W.J., Aththanayake, A.A.A.P., Kumara, G.R.A. et al. Transparent and conductive F-Doped SnO2 nanostructured thin films by sequential nebulizer spray pyrolysis. MRS Advances 6, 417–421 (2021). https://doi.org/10.1557/s43580-021-00017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00017-0

Keywords

Navigation