Skip to main content
Log in

A calcium aluminum rhenium sodalite with reducible rhenium in the sodalite cage

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

An unreported rhenium-based calcium aluminum sodalite (CARe sodalite) has been synthesized by a traditional solid-state method. The rhenium is located in the sodalite β-cage and can be reduced under 5% H2 forming gas without breaking the cage framework. Preliminary characterizations of the structural, optical, and magnetic properties are reported.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data will be available on request from the authors.

References

  1. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use (Wiley, New York, 1973)

    Google Scholar 

  2. A.R. West, Solid State Chemistry and Its Applications, 2nd edn. (Wiley, New York, 2022)

    Google Scholar 

  3. T. Weller M, Where zeolites and oxides merge: semi-condensed tetrahedral frameworks. J. Chem. Soc. Dalton Trans. 5, 4227–4240 (2000). https://doi.org/10.1039/B003800H

    Article  Google Scholar 

  4. J. Li, A. Corma, J. Yu, Synthesis of new zeolite structures. Chem. Soc. Rev. 44, 7112–7127 (2015). https://doi.org/10.1039/C5CS00023H

    Article  CAS  PubMed  Google Scholar 

  5. W. Depmeier, The sodalite family: a simple but versatile framework structure. Rev. Mineral. Geochem. 57, 203–240 (2005). https://doi.org/10.2138/rmg.2005.57.7

    Article  CAS  Google Scholar 

  6. M.E. Brenchley, M.T. Weller, Synthesis and structure of sulfide aluminate sodalites. J. Mater. Chem. 2, 1003–1005 (1992). https://doi.org/10.1039/JM9920201003

    Article  CAS  Google Scholar 

  7. M.E. Brenchley, M.T. Weller, Structures of strontium selenite and strontium selenide aluminate sodalites and the relationship of framework structure to vibrational spectra in aluminate sodalites. Chem. Mater. 5, 970–973 (1993). https://doi.org/10.1021/cm00031a015

    Article  CAS  Google Scholar 

  8. S. van Smaalen, R. Dinnebier, H. Katzke, W. Depmeier, Structural characterization of the high-temperature phase transitions in Ca8[Al12O24](MoO4)2 aluminate sodalite using x-ray powder diffraction. J. Solid State Chem. 129, 130–143 (1997). https://doi.org/10.1006/jssc.1996.7251

    Article  Google Scholar 

  9. W. Depmeier, Structure of cubic aluminate sodalite Ca8[Al12O24](WO4)2 in comparison with its orthorhombic phase and with cubic Sr8[Al12O24](CrO4)2. Acta Cryst. B 44, 201–207 (1988). https://doi.org/10.1107/S0108768187011959

    Article  Google Scholar 

  10. S. Lee, H. Xu, H. Xu, R. Jacobs, D. Morgan, Valleyite: a new magnetic mineral with the sodalite-type structure. Am. Miner. 104, 1238–1245 (2019). https://doi.org/10.2138/am-2019-6856

    Article  Google Scholar 

  11. B.K. Singh, M.A. Hafeez, H. Kim, S. Hong, J. Kang, W. Um, Inorganic waste forms for efficient immobilization of radionuclides. ACS EST Eng. 1, 1149–1170 (2021). https://doi.org/10.1021/acsestengg.1c00184

    Article  CAS  Google Scholar 

  12. A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon, E.D. Cubuk, Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L.T. Glasby, E.H. Whaites, P.Z. Moghadam, Machine learning and digital manufacturing approaches for solid-state materials development. In: AI-Guided Design and Property Prediction for Zeolites and Nanoporous Materials. Wiley, pp 377–409 (2023)

  14. R.P. Xian, V. Stimper, M. Zacharias, M. Dendzik, S. Dong, S. Beaulieu, B. Schölkopf, M. Wolf, L. Rettig, C. Carbogno, S. Bauer, R. Ernstorfer, A machine learning route between band mapping and band structure. Nat. Comput. Sci. 3, 101–114 (2023). https://doi.org/10.1038/s43588-022-00382-2

    Article  PubMed  Google Scholar 

  15. J.M. Gregoire, L. Zhou, J.A. Haber, Combinatorial synthesis for AI-driven materials discovery. Nat Synth 2, 493–504 (2023). https://doi.org/10.1038/s44160-023-00251-4

    Article  Google Scholar 

  16. D. Ni, Z. Hu, G. Cheng, X. Gui, W.-Z. Yu, C.-J. Jia, X. Wang, J. Herrero-Martín, N. Yao, L.-H. Tjeng, R.J. Cava, Magnetic frustration in a zeolite. Chem. Mater. 33, 9725–9731 (2021). https://doi.org/10.1021/acs.chemmater.1c03500

    Article  CAS  Google Scholar 

  17. S.M. Antao, I. Hassan, J.B. Parise, Chromate aluminate sodalite, Ca8[Al12O24](CrO4)2: phase transitions and high-temperature structural evolution of the cubic phase. Can. Mineral. 42, 1047–1056 (2004). https://doi.org/10.2113/gscanmin.42.4.1047

    Article  CAS  Google Scholar 

  18. I. Hassan, Structural modulations in a pseudo-cubic aluminate sodalite, Ca8[Al12O24](CrO4)2. Z. Kristallogr. 211, 228–233 (1996). https://doi.org/10.1524/zkri.1996.211.4.228

    Article  CAS  Google Scholar 

  19. M.T. Greiner, T.C.R. Rocha, B. Johnson, A. Klyushin, A. Knop-Gericke, R. Schlögl, The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: an in-situ XPS study. Z. Phys. Chem. 228, 521–541 (2014). https://doi.org/10.1515/zpch-2014-0002

    Article  CAS  Google Scholar 

  20. I. Hassan, Direct observation of phase transitions in aluminate sodalite, Ca8[Al12O24](CrO4)2. Am. Miner. 81, 1375–1379 (1996). https://doi.org/10.2138/am-1996-11-1210

    Article  CAS  Google Scholar 

  21. I. Hassan, Aluminate socialite, Ca8[Al12O24](CrO4)2, with tetragonal and orthorhombic superstructures. Eur. J. Mineral. 8, 477–486 (1996)

    Article  CAS  Google Scholar 

  22. R. Melzer, W. Depmeier, A structural study of aluminate sodalite Ca8[Al12O24](CrO4)2 (CACr). Cryst. Res. Technol. 31, 459–467 (1996). https://doi.org/10.1002/crat.2170310409

    Article  CAS  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  24. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Gordon and betty Moore Foundation grant number GBMF-9066. The authors acknowledge the use of Princeton’s Imaging and Analysis Center, which is partially supported by the Princeton Center for Complex Materials, a National Science Foundation (NSF)-MRSEC program (DMR-2011750).

Funding

This study was funded by Gordon and betty Moore Foundation Grant Number GBMF-9066 and National Science Foundation (NSF)-MRSEC program (DMR-2011750).

Author information

Authors and Affiliations

Authors

Contributions

Danrui Ni contributed toward conceptualization, methodology, investigation, formal analysis, visualization, and writing—original draft; Guangming Cheng contributed toward validation, investigation, formal analysis, visualization, and writing—reviewing and editing; Lun Jin contributed toward validation, investigation, and formal analysis; Chen Yang contributed toward validation and investigation; Nan Yao contributed toward resource, supervision, and project funding acquisition; Robert J. Cava* contributed toward conceptualization, resource, supervision, project funding acquisition, administration, and writing- reviewing and editing.

Corresponding author

Correspondence to Robert J. Cava.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1000 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, D., Cheng, G., Jin, L. et al. A calcium aluminum rhenium sodalite with reducible rhenium in the sodalite cage. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00550-7

Keywords

Navigation