Skip to main content
Log in

Production of manganese-doped ZnO-based NTC thermistor via combustion reaction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study examines the effects of Mn2+ doping on the microstructure, morphology, and thermoresistive properties of the Znx-1MnxO system (x = 0.8, 0.15 mol), synthesized via a combustion reaction. After uniaxial pressing (191 MPa) and sintering (1373 K), the samples exhibited NTC thermistor characteristics without a second phase. The decrease in the energy gap to 2.9 eV (Mn08) and 2.69 eV (Mn15), along with average particle sizes of 8.79 µm and 2.91 µm, respectively. The parameters α, β, A, B, C, and SF highlight the influence of Mn2+ doping on the properties of these materials, with potential applications in NTC thermistor devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.K. Kamat, G.M. Naik, Thermistors—in search of new applications, manufacturers cultivate advanced NTC techniques. Sens. Rev. 22(4), 334340 (2002). https://doi.org/10.1108/02602280210444654

    Article  Google Scholar 

  2. K. Park, J.K. Lee, Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scripta Mater. 57, 329–332 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.026

    Article  CAS  Google Scholar 

  3. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967–983 (2009). https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  CAS  Google Scholar 

  4. W.M.P.A. de Lima, L.H. de Carvalho Filho, R.A. Raimundo et al., Production of nickel-doped ZnO-based NTC thermistor via combustion reaction. MRS Commun. 11, 650–655 (2021). https://doi.org/10.1557/s43579-021-00091-3

    Article  CAS  Google Scholar 

  5. W.M.P.A. de Lima, T.L. de Sousa Moura, L.H. de Carvalho Filho et al., Production of negative temperature coefficient thermistors from copper-doped zinc oxide via combustion reaction. MRS Commun. 13, 75–81 (2023). https://doi.org/10.1557/s43579-022-00314-1

    Article  ADS  CAS  Google Scholar 

  6. B.K. Das, T. Das, D. Das, Structural and electrical properties of mechanically alloyed ZnO nanoceramic for NTC thermistor application. J. Mater. Sci. Mater. Electron. 34, 230 (2023). https://doi.org/10.1007/s10854-022-09670-z

    Article  CAS  Google Scholar 

  7. B. Li, Z. Li, D. Peng et al., Cerâmica ZnO dopada com Sb: termistores NTC com alta sensibilidade à temperatura e estabilidade elétrica. J. Mater. Sci. Mater. Electron. Mater Sci: Mater Electron. 32, 24296–24307 (2021). https://doi.org/10.1007/s10854-021-06896-1

    Article  CAS  Google Scholar 

  8. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.-S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30(39), 392001 (2019). https://doi.org/10.1088/1361-6528/ab268a

    Article  CAS  PubMed  Google Scholar 

  9. U. Urehman, K. Ulahar, K. Mahmood, M. Kanwal, A. Ashfaq, M.F. Iqbal, H. Wang, N. Al-Zaqri, E. Hussain, A.A. Khan, Effect of Ni and Mn dopant on thermoelectric power generation performance of ZnO nanostructures synthesized via hydrothermal method. Mater. Chem. Phys. 304, 127907 (2023). https://doi.org/10.1016/j.matchemphys.2023.127907

    Article  CAS  Google Scholar 

  10. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, Structural, optical, and dielectric study of Cu-doped ZnO nanoparticles synthesized by high-energy ball milling. Int. J. Nanomanuf. (2018). https://doi.org/10.1504/IJNBM.2017.090131

    Article  Google Scholar 

  11. L. Guo, Y.L. Ji, H. Xu, P. Simon, Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g

    Article  CAS  PubMed  Google Scholar 

  12. L. Bissoli de Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J. Alloys Compd. 779, 698–705 (2019). https://doi.org/10.1016/j.jallcom.2018.11.280

    Article  CAS  Google Scholar 

  13. J. El Ghoul, L. El Mir, Sol–gel synthesis and luminescence of undoped and Mn-doped zinc orthosilicate phosphor nanocomposites. J. Lumin. 148, 82–88 (2014). https://doi.org/10.1016/j.jlumin.2013.11.090

    Article  CAS  Google Scholar 

  14. S.R. Jain, K.C. Adiga, V.R. Pai Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71–79 (1981). https://doi.org/10.1016/0010-2180(81)90111-5

    Article  ADS  CAS  Google Scholar 

  15. S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys. 7, 604–610 (2017). https://doi.org/10.1016/j.rinp.2017.01.018

    Article  ADS  Google Scholar 

  16. D. Rubi, J. Fontcuberta, A. Calleja, Ll. Aragonès, X.G. Capdevila, M. Segarra, Reversible ferromagnetic switching in ZnO:(Co, Mn) powders. Phys. Rev. B 75, 155322 (2007). https://doi.org/10.1103/PhysRevB.75.155322

    Article  ADS  CAS  Google Scholar 

  17. R.A. Torquato, Combustion synthesis of Mn+2, Co+2, and Ni+2-doped ZnO for the production of diluted magnetic semiconductors (DMS) (Doctoral dissertation in Materials Science and Engineering). Federal University of Campina Grande, PB, Brazil (2011) http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7221

  18. D. Rubi, A. Calleja, J. Arbiol, X.G. Capdevila, M. Segarra, Ll. Aragonès, J. Fontcuberta, Structural and magnetic properties of ZnO:TM (TM: Co, Mn) nanopowders. J. Magn. Magn. Mater. 316(2), 211–214 (2007). https://doi.org/10.1016/j.jmmm.2007.02.092

    Article  ADS  CAS  Google Scholar 

  19. J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, Structure and magnetic properties of Mn-doped ZnO thin films. J. Phys. Condens. Matter 19(3), 036210 (2007). https://doi.org/10.1088/0953-8984/19/3/036210

    Article  ADS  CAS  Google Scholar 

  20. A. López-Suárez, D. Acosta, C. Magaña et al., Optical, structural and electrical properties of ZnO thin films doped with Mn. J. Mater. Sci. Mater. Electron. 31, 7389–7397 (2020). https://doi.org/10.1007/s10854-019-02830-8

    Article  CAS  Google Scholar 

  21. K. Suganthi, E. Vinoth, L. Sudha, P. Bharathi, M. Navaneethan, Manganese (Mn2+) doped hexagonal prismatic zinc oxide (ZnO) nanostructures for chemiresistive NO2 sensor. Sens. Actuators B Chem. 380, 133293 (2023). https://doi.org/10.1016/j.snb.2023.133293

    Article  CAS  Google Scholar 

  22. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  CAS  Google Scholar 

  23. S. Dutta, S. Chattopadhyay, D. Jana, A. Banerjee, S. Manik, S.K. Pradhan, M. Sutradhar, A. Sarkar, Annealing effect on nano-ZnO powder studied from positron lifetime and optical absorption spectroscopy. J. Appl. Phys. 100, 114328 (2006). https://doi.org/10.1063/1.2401311

    Article  ADS  CAS  Google Scholar 

  24. S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay, S. Chattopadhyay, A. Sarkar, Synthesis and characterization of single-phase Mn-doped ZnO. Physica B 404(8–11), 1509–1514 (2009). https://doi.org/10.1016/j.physb.2009.01.008

    Article  ADS  CAS  Google Scholar 

  25. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255(8), 4491–4496 (2009). https://doi.org/10.1016/j.apsusc.2008.11.055

    Article  ADS  CAS  Google Scholar 

  26. A.A. Sattar, H.M. El-Sayed, K.M. El-Shokrofy et al., Study of the dc resistivity and thermoelectric power in Mn-substituted Ni–Zn ferrites. J. Mater. Sci. 42, 149–155 (2007). https://doi.org/10.1007/s10853-006-1087-3

    Article  ADS  CAS  Google Scholar 

  27. C.L. Yuan, X.Y. Liu, J.W. Xu et al., Electrical properties of Srx Ba1–xF0.6Sn0.4O3−ε NTC thermistors. Bull. Mater. Sci. 35, 425–431 (2012). https://doi.org/10.1007/s12034-012-0294-6

    Article  CAS  Google Scholar 

  28. R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu 0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012). https://doi.org/10.1016/j.ceramint.2012.03.024

    Article  CAS  Google Scholar 

  29. E.A. de Vasconcelos, S.A. Khan, W.Y. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators A 83, 167–171 (2000). https://doi.org/10.1016/S0924-4247(00)00351-4

    Article  Google Scholar 

  30. J.S. Steinhart, S.R. Hart, Calibration curves for thermistors. Deep-Sea Res. Oceanogr. Abstr. 15, 497–503 (1968). https://doi.org/10.1016/0011-7471(68)90057-0

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Wictor Magnus Patrício Araújo de Lima: conceptualization, methodology, investigation, validation, writing—original draft. Iris Kemilly Duarte Vieira: conceptualization, methodology, investigation, validation, writing—review & editing. Joélcio Lopes de Oliveira Júnior: conceptualization, methodology, validation, writing—review & editing. Danniel Ferreira de Oliveira: formal analysis, writing—review & editing. Ramon Alves Torquato: conceptualization, supervision, formal analysis, writing—review & Editing.

Corresponding authors

Correspondence to Wictor Magnus Patrício Araújo de Lima or Iris Kemilly Duarte Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, W.M.P.A., Vieira, I.K.D., de Oliveira Júnior, J.L. et al. Production of manganese-doped ZnO-based NTC thermistor via combustion reaction. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00542-7

Keywords

Navigation