Skip to main content

Advertisement

Log in

Synthesis of Mn2+-doped ZnS by a mechanically induced self-sustaining reaction

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanochemical process denoted as a mechanically induced self-sustaining reaction was successfully applied in obtaining Mn-doped ZnS samples with Mn content between 0 and 5 mol%. The process consists in milling Zn/Mn/S powder elemental mixtures with the appropriate stoichiometry, which promotes after approximately 80 min the induction of a combustion reaction. The doping level was properly adjusted by controlling the atomic ratio of the starting mixture. A complete characterization of samples was carried out, including X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, Raman spectroscopy, diffuse reflectance UV–Vis spectroscopy and emission and excitation photoluminescence measurements. A wurtzite structure, in which Mn2+ replaces Zn2+, was obtained with a nanometric character. The photoluminescence of samples showed the characteristic Mn2+4T16A1 emission that was highly dependent on the doping level. The maximum luminescence efficiency through the ZnS excitation was found for a doping value of 1 mol%. The photoluminescence showed virtually no contribution from the host emission, which confirmed that samples were properly doped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pradhan N, Sarma DD (2011) Advances in light-emitting doped semiconductor nanocrystals. J Phys Chem Lett 21:2818–2826

    Google Scholar 

  2. Gong Y, Fan Z (2015) Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium(IV). Biosens Bioelectron 66:533–538

    CAS  Google Scholar 

  3. Deng P, Lu LQ, Tan T, Jin Y, Fan XZ, Cao WC, Tian XK (2017) Novel phosphorescent Mn-doped ZnS quantum dots as a probe for the detection of l-tyrosine in human urine. Anal Methods 9:287–293

    CAS  Google Scholar 

  4. Zhang Z, She J, Chen H, Deng S, Xu N (2013) Laser-induced doping and fine patterning of massively prepared luminescent ZnS nanospheres. J Mater Chem C 1:4970–4978

    CAS  Google Scholar 

  5. Horoz S, Dai Q, Maloney FS, Yakami B, Pikal JM, Zhang X, Wang J, Wang W, Tang J (2015) Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells. Phys Rev Appl 3:024011

    CAS  Google Scholar 

  6. Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) Emission properties of manganese-doped ZnS nanocrystals. J Phys Chem B 109:1663–1668

    CAS  Google Scholar 

  7. Tanaka M (2002) Photoluminescence properties of Mn2+-doped II–VI semiconductor nanocrystals. J Lumin 100:163–173

    CAS  Google Scholar 

  8. Wei M, Yang J, Yan Y, Yang L, Cao J, Fu H, Wang B, Fan L (2013) Influence of Mn ions concentration on optical and magnetic properties of Mn-doped ZnS nanowires. Physica E 52:144–149

    CAS  Google Scholar 

  9. Sotelo-Gonzalez E, Roces L, Garcia-Granda S, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A (2013) Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties. Nanoscale 5:9156–9161

    CAS  Google Scholar 

  10. Song C, Chen B, Chen Y, Wu Y, Zhuang Z, Lu X, Qiao X, Fan X (2014) Microstructures and luminescence behaviors of Mn2+ doped ZnS nanoparticle clusters with different core/shell assembled orders. J Alloys Compd 590:546–552

    CAS  Google Scholar 

  11. Viswanath R, Naik HSB, Kumar GSY, Kumar PNP, Kumar GA, Praveen R (2014) EDTA-assisted hydrothermal synthesis, characterization and photoluminescent properties of Mn2+-doped ZnS. J Lumin 153:446–452

    CAS  Google Scholar 

  12. Tuan NT, Trung DQ, Quang NV, Hung ND, Khoi NT, Huy PT, Smete PF, Meert KW, Poelman D (2018) Excitation energy dependence of the life time of orange emission from Mn-doped ZnS nanocrystals. J Lumin 199:39–44

    CAS  Google Scholar 

  13. Srivastava BB, Jana S, Karan NS, Paria S, Jana NR, Sarma DD, Pradhan N (2010) Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis. J Phys Chem Lett 1:1454–1458

    CAS  Google Scholar 

  14. Whiffen RMK, Jovanović DJ, Antić Ž, Bártová B, Milivojević D, Dramićanin MD, Brik MG (2014) Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route. J Lumin 146:133–140

    Google Scholar 

  15. Kamran MA, Majid A, Alharbi T, Iqbal MW, Amjad MW, Nabi G, Zou S, Zou B (2017) Large tunable luminescence by Mn(II) aggregates in Mn-doped ZnS nanobelts. J Mater Chem C 5:8749–8757

    CAS  Google Scholar 

  16. Li J, Liu K, Zhu X, Meng M, Qin W, Liu Q, Xu C (2016) Competitive mechanism of electron transition in Mn-doped ZnS nanoribbons. J Alloys Compd 658:616–620

    CAS  Google Scholar 

  17. Bol AA, Meijerink A (2001) Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. J Phys Chem B 105:10197–10202

    CAS  Google Scholar 

  18. Peng WQ, Qu SC, Cong GW, Zhang XQ, Wang ZG (2005) Optical and magnetic properties of ZnS nanoparticles doped with Mn2+. J Cryst Growth 282:179–185

    CAS  Google Scholar 

  19. Manimegalai DK, Manikandan A, Moortheswaran S, Antony SA (2015) Magneto-optical and photocatalytic properties of magnetically recyclable MnxZn1−xS (x = 0.0, 0.3, and 0.5) nanocatalysts. J Supercond Nov Magn 28:2755–2766

    CAS  Google Scholar 

  20. Won CW, Nersisyan HH, Won HI, Jeon DY, Han JY (2010) Combustion synthesis and photoluminescence of ZnS:Mn2+ particles. J Lumin 130:1026–1031

    CAS  Google Scholar 

  21. Tanaka H, Miyazaki E, Odawara O (2004) Combustion synthesis of zinc–manganese–sulfur compound systems. Int J Self Propag High Temp Synth 13:227–232

    CAS  Google Scholar 

  22. Kozitsky SV, Chebanenko AP (1994) Electroluminescence of Mn-doped ZnS obtained by the SHS method. J Appl Spectrosc 60:338–340

    Google Scholar 

  23. Won CW, Nersisyan HH, Won HI, Jeon DY, Kirakosyan AG (2011) Synthesis of ZnS phosphor particles in exothermic frontal waves. Combust Sci Technol 183:915–927

    CAS  Google Scholar 

  24. Bacherikov YY, Baran NP, Vorona IP, Gilchuk AV, Zhuk AG, Polishchuk YO, Lavorik SR, Kladko VP, Kozitskii SV, Venger EF, Korsunska NE (2017) Structural and optical properties of ZnS:Mn micro-powders, synthesized from the charge with a different Zn/S ratio. J Mater Sci Mater Electron 28:8569–8578

    CAS  Google Scholar 

  25. Mukasyan AS, Rogachev AS, Aruna STR (2015) Combustion synthesis in nanostructured reactive systems. Adv Powder Technol 26:954–976

    CAS  Google Scholar 

  26. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586

    CAS  Google Scholar 

  27. Levashov EA, Mukasyan AS, Rogachev AS, Shtansky DV (2017) Self-propagating high-temperature synthesis of advanced materials and coatings. Int Mater Rev 62:203–239

    CAS  Google Scholar 

  28. Binnewies M, Milke E (1999) Thermochemical data of elements and compounds. Wiley, Weinheim

    Google Scholar 

  29. Munir ZA, Anselmi-Tamburini U (1989) Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater Sci Rep 3:277–365

    CAS  Google Scholar 

  30. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414

    CAS  Google Scholar 

  31. Tschakarov CG, Gospodinov GG, Bontschev Z (1982) Uber den Mechanismus der mechanochemischen Synthese anorganischer Verbindungen. J Solid State Chem 41:244–252

    Google Scholar 

  32. Chakurov C, Rusanov V, Koichev J (1987) The effect of inert additives on the explosive mechanochemical synthesis of some metal chalcogenides. J Solid State Chem 71:522–529

    CAS  Google Scholar 

  33. Bakhshai A, Soika V, Susol MA, Takacs L (2000) Mechanochemical reactions in the Sn–Zn–S system: further studies. J Solid State Chem 153:371–380

    CAS  Google Scholar 

  34. Avilés MA, Córdoba JM, Sayagués MJ, Gotor FJ (2019) Tailoring the band gap in the ZnS/ZnSe system: solid solutions by a mechanically induced self-sustaining reaction. Inorg Chem 58:2565–2575

    Google Scholar 

  35. Dhara A, Sain S, Das S, Pradhan SK (2018) Microstructure, optical and electrical characterizations of Mn doped ZnS nanocrystals synthesized by mechanical alloying. Mater Res Bull 97:169–175

    CAS  Google Scholar 

  36. Sain S, Kar A, Mukherjee M, Das D, Pradhan SK (2016) Structure, optical and magnetic characterizations of Mn doped ZnS dilute magnetic semiconductor synthesized by mechanical alloying. Adv Powder Technol 27:1790–1799

    CAS  Google Scholar 

  37. Tolia JV, Chakraborty M, Murthy ZVP (2012) Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Pol J Chem Technol 14:16–21

    Google Scholar 

  38. Hamaguchi S, Ishizaki S, Kobayashi M (2008) Preparation of ZnS:Mn2+ and other sulpher compound nanoparticles by using a ball-milling method. J Korean Phys Soc 53:3029–3032

    CAS  Google Scholar 

  39. Wang X, Zhang Q, Zou B, Lei A, Ren P (2011) Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties. Appl Surf Sci 257:10898–10902

    CAS  Google Scholar 

  40. Cao J, Han D, Wang B, Fan L, Fu H, Wei M, Feng B, Liu X, Yang J (2013) Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires. J Solid State Chem 200:317–322

    CAS  Google Scholar 

  41. Tian Y, Zhao Y, Tang H, Zhou W, Wang L, Zhang J (2015) Synthesis of ZnS ultrathin nanowires and photoluminescence with Mn2+ doping. Mater Lett 148:151–154

    CAS  Google Scholar 

  42. Xiong Q, Wang J, Reese O, Voon LCLY, Eklund PC (2004) Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett 4:1991–1996

    CAS  Google Scholar 

  43. Kim JH, Rho H, Kim J, Choi YJ, Park JG (2012) Raman spectroscopy of ZnS nanostructures. J Raman Spectrosc 43:906–910

    CAS  Google Scholar 

  44. Cheng YC, Jin CQ, Gao F, Wu XL, Zhong W, Li SH, Chu PK (2009) Raman scattering study of zinc blende and wurtzite ZnS. J Appl Phys 106:123505

    Google Scholar 

  45. Serrano J, Cantarero A, Cardona M, Garro N, Lauck R, Tallman RE, Ritter TM, Weinstein BA (2004) Raman scattering in β-ZnS. Phys Rev B 69:014301

    Google Scholar 

  46. Jiménez-Sandoval S, López-Rivera A, Irwin JC (2003) Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS. Phys Rev B 68:054303

    Google Scholar 

  47. Wu J, Gutierrezand HR, Eklund PC (2008) Synthesis and Raman scattering from Zn1−xMnxS diluted magnetic semiconductor nanowires. J Nanosci Nanotechnol 8:393–399

    CAS  Google Scholar 

  48. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    CAS  Google Scholar 

  49. Kripal R, Gupta AK, Mishra SK, Srivastava RK, Pandey AC, Prakash SG (2010) Photoluminescence and photoconductivity of ZnS:Mn2+ nanoparticles synthesized via co-precipitation method. Spectrochim Acta A 76:523–530

    Google Scholar 

  50. Nag A, Chakraborty S, Sarma DD (2008) To dope Mn2+ in a semiconducting nanocrystal. J Am Chem Soc 130:10605–10611

    CAS  Google Scholar 

  51. Park BJ, Im WB, Chung WJ, Seo HS, Ahn JT, Jeon DY (2007) Internal pressure effect on cathodoluminescence enhancement of ZnS:Mn2+ synthesized by a sealed vessel. J Mater Res 22:2838–2844

    CAS  Google Scholar 

  52. Wang X, Ling R, Zhang Y, Que M, Peng Y, Pan C (2018) Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping. Nano Res 11:1967–1976

    CAS  Google Scholar 

  53. Lu HY, Chu SY (2004) The mechanism andcharacteristics of ZnS-based phosphor powders. J Cryst Growth 265:476–481

    CAS  Google Scholar 

  54. Wang L, Xu X, Yuan X (2010) Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. J Lumin 30:137–140

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financed in part by the European Regional Development Fund through the Ramón y Cajal Program RYC-2013–12437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gotor.

Ethics declarations

Conflicts of interest

There are no conflicts to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilés, M.A., Córdoba, J.M., Sayagués, M.J. et al. Synthesis of Mn2+-doped ZnS by a mechanically induced self-sustaining reaction. J Mater Sci 55, 1603–1613 (2020). https://doi.org/10.1007/s10853-019-04138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04138-8

Navigation