Skip to main content
Log in

Highly efficient TiO2 nanotubes for photocatalytic degradation reactions through optimization of textural properties

  • Advanced Catalytic Materials: Nano and Bulk Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A series of titanium dioxide nanotubes were synthesized via a hydrothermal method. By varying the preparation conditions, nanotubes with different morphologies or textural properties were produced. Various characterization techniques were used to clarify the various features of the as-prepared nanotubes. Samples with surface areas ranging between 200 and 230 m2/g in specific surface area exhibit the maximum photocatalytic activity in the degradation of formic acid. Detailed analysis of the structural characteristics emphasizes the complex role played by surface structural defects in the tuning of their photocatalytic performance helping in this way to achieve optimal activity in photooxidation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information file. Any raw data files should be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. V. Subhiksha, S. Kokilavani, S. Sudheer Khan, Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: a review. Chemosphere 290, 133228 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. N.A. Mohd Razali, W.N. Wan Salleh, F. Aziz, L.W. Jye, N. Yusof, A.F. Ismail, Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. J. Clean. Prod. 309, 127438 (2021)

    Article  CAS  Google Scholar 

  3. A. Sharma, P. Negi, R.J. Konwar, H. Kumar, Y. Verma, P.C. Shailja, B. Sati, H. Rajyaguru, N.A. Dadhich, P.S.S. Shah, Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. J. Mater. Sci. Technol. 111, 287–297 (2022)

    Article  CAS  Google Scholar 

  4. Z. Li, S. Wang, J. Wu, W. Zhou, Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew. Sustain. Energy Rev. 156, 111980 (2022)

    Article  Google Scholar 

  5. T. Gupta, Samriti, J. Cho, J. Prakash, Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities. Mater. Today Chem. 20, 100428 (2021)

    Article  CAS  Google Scholar 

  6. M.M. Abutalib, H.M. Alghamdi, A. Rajeh, O. Nur, A.M. Hezma, M.A. Mannaa, Fe3O4/Co3O4–TiO2 S-scheme photocatalyst for degradation of organic pollutants and H2 production under natural sunlight. J. Mater. Res. Technol. 20, 1043–1056 (2022)

    Article  CAS  Google Scholar 

  7. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu, Monolayer Ti3C2Tx as an effective Co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl. Energy Mater. 2, 4640–4651 (2019)

    Article  CAS  Google Scholar 

  8. Y. Chen, W. Gu, L. Tan, Z. Ao, T. An, S. Wang, Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst. Appl. Catal. A Gen. 618, 118127 (2021)

    Article  CAS  Google Scholar 

  9. H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Z.J. Wu, S. Cao, C. Zhang, L.Y. Piao, Effects of bulk and surface defects on the photocatalytic performance of size-controlled TiO2 nanoparticles. Nanotechnology 28, 275706 (2017)

    Article  PubMed  Google Scholar 

  11. H. Song, K. Cheng, H.F. Guo, F. Wang, J.L. Wang, N.F. Zhu, M.X. Bai, X.Q. Wang, Effect of ethylene glycol concentration on the morphology and catalytic properties of TiO2 nanotubes. Catal. Comm. 97, 23–26 (2017)

    Article  CAS  Google Scholar 

  12. B. Henkel, A. Vahl, O.C. Aktas, T. Strunskus, F. Faupel, Self-organized nanocrack networks: a pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO2. Nanotechnology 29, 035703 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. A. Turki, H. Kochkar, C. Guillard, G. Berhault, A. Ghorbel, Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid. Appl. Catal. B Environ. 138–139, 401–415 (2013)

    Article  Google Scholar 

  14. P. Hoyer, Semiconductor nanotube formation by a two-step template process. Adv. Mater. 8, 857 (1996)

    Article  CAS  Google Scholar 

  15. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998)

    Article  CAS  Google Scholar 

  16. I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, K.O. Savka, Methods of titanium dioxide synthesis. Phys. Chem. Solid State 21, 462–477 (2020)

    Article  CAS  Google Scholar 

  17. H. Kochkar, N. Lakhdar, G. Berhault, M. Bausach, A. Ghorbel, Optimization of the alkaline hydrothermal route to titanate nanotubes by a doehlert matrix experience design. J. Phys. Chem. C 113, 1672–1679 (2009)

    Article  CAS  Google Scholar 

  18. C. Guillard, E. Puzenat, H. Lachheb, A. Houas, J.M. Herrmann, Why inorganic salts decrease the TiO2 photocatalytic efficiency. Int. J. Photoenergy 7, 1–9 (2005)

    Article  CAS  Google Scholar 

  19. B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994–13002 (2010)

    Article  CAS  Google Scholar 

  20. S. Mozia, E. Borowiak-Paleń, J. Przepiórski, B. Grzmil, T. Tsumura, M. Toyoda, J. Grzechulska-Damszel, A.W. Morawski, Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. J. Phys. Chem. Solids 71, 263–272 (2010)

    Article  ADS  CAS  Google Scholar 

  21. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33, 912–916 (2000)

    Article  ADS  CAS  Google Scholar 

  22. T. Beuvier, M. Richard-Plouet, L. Brohan, Accurate methods for quantifying the relative ratio of anatase and TiO2(B) nanoparticles. J. Phys. Chem. C 113, 13703–13706 (2009)

    Article  CAS  Google Scholar 

  23. M. Meksi, A. Turki, H. Kochkar, L. Bousselmi, C. Guillard, G. Berhault, The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B Environ. 181, 651–660 (2016)

    Article  CAS  Google Scholar 

  24. J.W. Ma, W. Li, N.T. Le, J.A. Diaz-Real, M. Body, C. Legein, J. Swiatowska, A. Demortière, O.J. Borkiewicz, E.A. Konstantinova, A.I. Kokorin, N. Alonso-Vante, C. Laberty-Robert, D. Dambournet, Red-shifted absorptions of cation-defective and surface-functionalized anatase with enhanced photoelectrochemical properties. ACS Omega 4, 10929–10938 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A.M. Pennington, A.I. Okonmah, D.T. Munoz, G. Tsilomelekis, F.E. Celik, Changes in polymorph composition in P25-TiO2 during pretreatment analyzed by differential diffuse reflectance spectral analysis. J. Phys. Chem. C 122, 5093–5104 (2018)

    Article  CAS  Google Scholar 

  26. N. Murakami, T.A. Kamai, T. Tsubota, T. Ohno, Control of the crystal structure of titanium(IV) oxide by hydrothermal treatment of a titanate nanotube under acidic conditions. CrystEngComm 12, 532–537 (2010)

    Article  CAS  Google Scholar 

  27. I. Abdouli, F. Dappozze, M. Eternot, C. Guillard, N. Essayem, TiO2 catalyzed dihydroxyacetone (DHA) conversion in water: evidence that this model reaction probes basicity in addition to acidity. Molecules 27, 8172 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. I. Singh, B. Birajdar, Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol-gel route. RSC Adv. 7, 54053–54062 (2017)

    Article  ADS  CAS  Google Scholar 

  29. N.T. Sahrin, R. Nawaz, F.K. Chong, S.L. Lee, M.D.H. Wirzal, Current perspectives of anodized TiO2 nanotubes towards photodegradation of formaldehyde: a short review. Environ. Technol. Innov. 22, 101418 (2021)

    Article  CAS  Google Scholar 

  30. T. Zhang, B. Yu, D. Wang, F. Zhou, Molybdenum-doped and anatase/rutile mixed-phase TiO2 nanotube photoelectrode for high photoelectrochemical performance. J. Power. Sources 281, 411–416 (2015)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

Z. Roostaei thanks Campus France and Région Auvergne Rhöne-Alpes for his scholarship.

Funding

Funding was provided by Campus France (Grant No. 971239 J) and Région Auvergne-Rhône-Alpes.

Author information

Authors and Affiliations

Authors

Contributions

GB: conceptualization, ZR, FD, and GB: methodology, CG and GB: validation, formal analysis, ZR, GB, and CG: investigation, FD: resources, ZR: writing—original draft presentation, GB: writing—review and editing, CG and GB: supervision, GB: project administration, ZR and GB: funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gilles Berhault.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostaei, Z., Dappozze, F., Guillard, C. et al. Highly efficient TiO2 nanotubes for photocatalytic degradation reactions through optimization of textural properties. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00537-4

Keywords

Navigation