Skip to main content
Log in

Accuracy of classical force fields for polyethylene structures away from equilibrium

  • MRS 50th Anniversary Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study compares the performance of four classical force fields (FFs)—OPLS, PCFF, TraPPE-UA, and ReaxFF—with density functional theory (DFT) for modeling polyethylene (PE) configurations under extreme conditions. We evaluate their accuracy in predicting energies, forces, and stresses. Additionally, the FFs are used to generate a pressure–temperature phase diagram to compare PE’s melting behavior against experimental observations. The results indicate that PCFF and OPLS exhibit the closest agreement with DFT, while PCFF, TraPPE-UA, and ReaxFF perform equally when compared to experimental data. This research provides valuable insights for complex simulations, such as high-pressure shock compression studies on PE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data and code generated during this study is available by request.

References

  1. D. Jeremic, Ullmann’s Encyclopedia of Industrial Chemistry, (Wiley-VCH, Weinheim, 2014) https://doi.org/10.1002/14356007.a21_487.pub3

  2. P.W. Teare, D.R. Holmes, J. Polym. Sci. (1956). https://doi.org/10.1002/pol.1957.1202410724

    Article  Google Scholar 

  3. Y. Takahashi, T. Ishida, M. Furusaka, J. Polym. Sci. B: Polym. Phys. (1988). https://doi.org/10.1002/polb.1988.090261107

    Article  Google Scholar 

  4. K.E. Russell, B.K. Hunter, R.D. Heyding, Polymer (1997). https://doi.org/10.1016/S0032-3861(96)00643-X

    Article  Google Scholar 

  5. P. Hohenberg, W. Kohn, Phys. Rev. (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  6. W. Kohn, L.J. Sham, Phys. Rev. (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  7. B.J. Alder, T.E. Wainwright, J. Chem. Phys. (1959). https://doi.org/10.1063/1.1730376

    Article  Google Scholar 

  8. C. Wang, Y. Xue, C. Wang, D. Han, Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109546

    Article  Google Scholar 

  9. J.A. Greathouse, M.D. Allendorf, J. Phys. Chem. C (2008). https://doi.org/10.1021/jp076853w

    Article  Google Scholar 

  10. T.R. Mattsson, J.M.D. Lane, K.R. Cochrane, M.P. Desjarlais, A.P. Thompson, F. Pierce, G.S. Grest, Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.81.054103

    Article  Google Scholar 

  11. W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. (1988). https://doi.org/10.1021/ja00214a001

    Article  PubMed  Google Scholar 

  12. E.K. Watkins, W.L. Jorgensen, J. Phys. Chem. A (2001). https://doi.org/10.1021/jp004071w

    Article  Google Scholar 

  13. H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. (1994). https://doi.org/10.1021/ja00086a030

    Article  Google Scholar 

  14. S.J. Keasler, S.M. Charan, C.D. Wick, I.G. Economou, J.I. Siepmann, J. Phys. Chem. (2012). https://doi.org/10.1021/jp302975c

    Article  Google Scholar 

  15. A.C.T. Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. (2001). https://doi.org/10.1021/jp004368u

    Article  Google Scholar 

  16. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. Duin, npj Comput. Mater. (2016). https://doi.org/10.1038/npjcompumats.2015.11

    Article  Google Scholar 

  17. C.D. Wick, M.G. Martin, J.I. Siepmann, J. Phys. Chem. (2000). https://doi.org/10.1021/jp001044x

    Article  Google Scholar 

  18. G. Shchygol, A. Yakovlev, T. Trnka, A.C.T. Duin, T. Verstraelen, J. Chem. Theory Comput. (2019). https://doi.org/10.1021/acs.jctc.9b00769

    Article  PubMed  Google Scholar 

  19. E. Erdtman, K.C. Satyanarayana, K. Bolton, Polymer (2012). https://doi.org/10.1016/j.polymer.2012.04.045

    Article  Google Scholar 

  20. M. Tsige, G.S. Grest, J. Phys. Chem. C (2008). https://doi.org/10.1021/jp710678w

    Article  Google Scholar 

  21. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, Comput. Phys. Commun. (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  22. G. Kresse, J. Furthmüller, Phys. Rev. B (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  23. G. Kresse, D. Joubert, Phys. Rev. B (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B (1996). https://doi.org/10.1103/PhysRevB.54.16533

    Article  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  26. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. (2005). https://doi.org/10.1103/PhysRevLett.92.246401

    Article  PubMed  Google Scholar 

  27. L. Chen, Electronic Structure and Vibrational Behavior of Polyethylene: Role of Chemical, Morphological and Interfacial Complexity, Dissertation, University of Connecticut, 2017

  28. T. Yemni, R.L. McCullough, J Polym Sci B: Polym. Phys. (1973). https://doi.org/10.1002/pol.1973.180110713

    Article  Google Scholar 

  29. R. Androsch, M.L.D. Lorenzo, C. Schick, B. Wunderlich, Polymer (2010). https://doi.org/10.1016/j.polymer.2010.07.033

    Article  Google Scholar 

  30. C. Das, D. Frenkel, J. Chem. Phys. (2003). https://doi.org/10.1063/1.1568934

    Article  Google Scholar 

Download references

Acknowledgments

This work supported KGF by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: RR; calculations: KGF, LC, HT; analysis and interpretation of results: all; draft manuscript preparation: all.

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frawley, K.G., Chen, L., Tran, H. et al. Accuracy of classical force fields for polyethylene structures away from equilibrium. MRS Communications 14, 1–7 (2024). https://doi.org/10.1557/s43579-023-00503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00503-6

Keywords

Navigation