Skip to main content
Log in

Deposition and dielectric characterization of highly oriented V2O5 thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The possibility of ferroelectricity in orthorhombic V2O5 thin films was investigated. Films were deposited via either a chemical solution deposition (CSD) route or by RF magnetron sputtering. Highly (001) oriented V2O5 films were achieved with both deposition routes at temperatures as low as 300°C. No evidence for ferroelectricity was observed, even in films which had been doped to provide local nuclei for polarization reversal. Loss originated from mid-gap trap states stemming from oxygen vacancies that were observed with photoluminescence, supplemented by piezoresponse force microscopy measurements. These trap states may have helped mimic ferroelectricity in previous reports on V2O5.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

N/A.

References

  1. I.K. Schuller, R. Stevens, R. Pino, M. Pechan, Neuromorphic Computing—From Materials Research to Systems Architecture Roundtable (USDOE Office of Science, 2015). https://www.osti.gov/biblio/1283147. Accessed 3 March 2023

  2. A.I. Khan, A. Keshavarzi, S. Datta, Nat. Electron. 3, 10 (2020)

    Article  Google Scholar 

  3. S. Fichtner, N. Wolff, F. Lofink, L. Kienle, B. Wagner, J. Appl. Phys. 125, 11 (2019)

    Article  Google Scholar 

  4. J. Hayden, M.D. Hossain, Y. Xiong, K. Ferri, W. Zhu, M.V. Imperatore, N. Geibink, S. Trolier-McKinstry, I. Dabo, J.P. Maria, Phys. Rev. Mater. 5, 4 (2021)

    Google Scholar 

  5. I.H. Ismailzade, A. Alecberov, R. Ismailov, I. Aliyez, D. Rzayev, Ferroelectrics 23, 1 (1980)

    Article  Google Scholar 

  6. S. Lee, M. Kim, J. Lee, Z. Yang, S. Ramanathan, S. Tiwari, in IEEE International Conference in Nanotechnology, 2011 (2011)

  7. R. Basu, G. Mangamma, S. Dhara, arXiv preprint (2021)

  8. S. Beke, Thin Solid Films 519, 6 (2011)

    Article  Google Scholar 

  9. X. Wang, H. Li, Y. Fei, X. Wang, Y. Xiong, Y. Nie, K. Feng, Appl. Surf. Sci. 177, 1–2 (2001)

    Article  ADS  Google Scholar 

  10. V. Yelsani, N. Pothukanuri, U. Sontu, V. Yaragani, R. Venkata, Mater. Sci. 25, 1 (2019)

    Google Scholar 

  11. N. Fateh, G. Fontalvo, C. Mitterer, J. Phys. D 40, 7716 (2007)

    Article  CAS  ADS  Google Scholar 

  12. A. Gies, B. Pecquenard, A. Benayad, H. Martinez, D. Gonbeau, H. Fuess, A. Levasseur, Solid State Ion. 176, 17–18 (2005)

    Article  Google Scholar 

  13. R. Irani, S. Rozati, S. Beke, Appl. Phys. A 124, 4 (2018)

    Article  Google Scholar 

  14. R. Lopez, L. Boatner, T. Haynes, L. Feldman, R. Haglund Jr., J. Appl. Phys. 92, 7 (2002)

    Article  Google Scholar 

  15. Y. Li, J. Yao, E. Uchaker, M. Zhang, J. Tian, X. Liu, G. Cao, J. Phys. Chem. C 117, 45 (2013)

    Google Scholar 

  16. H. Giannetta, C. Calaza, D. Lamas, L. Fonseca, L. Fraigi, Thin Solid Films 589, 730–734 (2015)

    Article  CAS  ADS  Google Scholar 

  17. F. Coustier, S. Passerini, J. Hill, W. Smyrl, MRS OPL 496, 353–358 (1997)

    Article  Google Scholar 

  18. F. Coustier, J. Hill, B. Owens, S. Passerini, W. Smyrl, J. Electrochem. Soc. 146, 4 (1999)

    Article  Google Scholar 

  19. M. Panagopoulou, D. Vernardou, E. Koudoumas, D. Tsoukalas, Y. Raptis, Electrochim. Acta 321, 134743 (2019)

    Article  CAS  Google Scholar 

  20. C. Wang, D. Lai, M. Chen, Mater. Lett. 64, 1 (2010)

    Article  Google Scholar 

  21. F. Tan, J. Hassan, Z. Wahab, Results Phys. 6, 420–427 (2016)

    Article  ADS  Google Scholar 

  22. R. Grybo, A. Samotus, N. Popova, K. Bogolitsyn, Trans. Met. Chem. 22, 1 (1997)

    Article  Google Scholar 

  23. J. Ziolkowski, K. Mocala, Therm. Chem. Acta 92, 575–578 (1985)

    CAS  Google Scholar 

  24. W. Schroeder, Pathway and Surface Mechanism Studies of 1, 3-Butadiene Selective Oxidation over Vanadium–Molybdenum–Oxygen Catalysts (Iowa State University, Ames, 2001)

    Book  Google Scholar 

  25. F. Tan, J. Hassan, Z. Wahab, Eng. Sci. Technol. Int. 19, 4 (2016)

    Google Scholar 

  26. J. Evans, Main Vision Manual (Radiant Technologies, 2022). https://download.ferroelectricdevices.com/MainVisionManualHTML/index.htm. Accessed 6 Jan 2022

  27. L. Collins, Y. Liu, O. Ovchinnikova, R. Proksch, ACS Nanotechnol. 13, 7 (2019)

    Google Scholar 

  28. Y. Liu, L. Collins, R. Proksch, S. Kim, B. Watson, B. Doughty, T. Calhoun, M. Ahmadi, A. Ievlev, S. Jesse, S. Retterer, A. Belianinov, K. Xiao, J. Huang, B. Sumpter, S. Kalinin, B. Hu, O. Ovchinnikova, Nat. Mater. 17, 11 (2018)

    Google Scholar 

  29. R. Vasudevan, N. Balke, P. Maksymovych, S. Jesse, S. Kalinin, Appl. Phys. Rev. 4, 2 (2017)

    Article  Google Scholar 

  30. D. Scanlon, A. Walsh, B. Morgan, G. Watson, J. Phys. Chem. C 112, 26 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Center for 3D Ferroelectric Microelectronics (3DFeM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers Program under Award Number DE-SC0021118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Jacques.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2763 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, L., Shetty, S., Vega, F.J. et al. Deposition and dielectric characterization of highly oriented V2O5 thin films. MRS Communications 14, 76–81 (2024). https://doi.org/10.1557/s43579-023-00502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00502-7

Keywords

Navigation