Skip to main content
Log in

Amorphous and hexagonal boron nitride growth using bromide chemistry

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A plasma-enhanced chemical vapour deposition process based on a micro-plasma working in argon/nitrogen mixture and using a bromide precursor is used to grow boron nitride. Without hydrogen (H2) in the reactive media, growth of amorphous boron nitride (a-BN) is observed, while the injection of H2 in the deposition chamber leads to the growth of hexagonal boron nitride (h-BN), H2 limiting the negative effect of bromide. The distance between the plasma source and the substrate has a strong influence on the films stoichiometry which partly explains why the h-BN layers are not stable with a fast deterioration into boric acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Data are available on request.

References

  1. K.I. Bolotin, K.J. Sikes, Z.Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  ADS  Google Scholar 

  2. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, X. Xu, Nat. Commun. 4, 1474 (2013). https://doi.org/10.1038/ncomms2498

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Z. Ye, T. Cao, K. O’brien, H. Zhu, X. Yin, Y. Wang, S.G. Louie, X. Zhang, Nature 513, 214–218 (2014). https://doi.org/10.1038/nature13734

    Article  CAS  PubMed  ADS  Google Scholar 

  4. A. Ranjan, N. Raghavan, M. Holwill, K. Watanabe, T. Taniguchi, K.S. Novoselov, K.L. Pey, S.J. O’Shea, ACS Appl. Electron. Mater. 3(8), 3547–3554 (2021). https://doi.org/10.1021/acsaelm.1c00469

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  ADS  Google Scholar 

  6. E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, A.J. Hart, Sci. Rep. 5, 10257 (2015). https://doi.org/10.1038/srep10257

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, 2D Mater. 2, 014006 (2015). https://doi.org/10.1088/2053-1583/2/1/014006

    Article  CAS  ADS  Google Scholar 

  8. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d

    Article  CAS  PubMed  Google Scholar 

  9. R.Y. Tay, M.H. Griep, M. Govind, S.H. Tsang, R.S. Singh, T. Tumlin, E.H.T. Teo, S.P. Karna, Nano Lett. 14, 839–846 (2014). https://doi.org/10.1021/nl404207f

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Z. Xu, H. Tian, A. Khanaki, R. Zheng, M. Suja, J. Liu, Sci. Rep. 7, 43100 (2017). https://doi.org/10.1038/srep43100

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. M. Weber, B. Koonkaew, S. Balme, I. Utke, F. Picaud, I. Iatsunskyi, E. Coy, P. Miele, M. Bechelany, ACS Appl. Mater. Interfaces 9(19), 16669–16678 (2017). https://doi.org/10.1021/acsami.7b02883

    Article  CAS  PubMed  Google Scholar 

  12. N.R. Glavin, M.L. Jespersen, M.H. Check, J. Hu, A.M. Hilton, T.S. Fisher, A.A. Voevodin, Thin Solid Films 572, 245–250 (2014). https://doi.org/10.1016/j.tsf.2014.07.059

    Article  CAS  ADS  Google Scholar 

  13. Z. Hao, X. Liu, X. Zhu, M. Zhang, M. Tang, X. Pan, Mater. Res. Express 9, 045009 (2022). https://doi.org/10.1088/2053-1591/ac65e0

    Article  ADS  Google Scholar 

  14. C. Lazzaroni, P. Chabert, A. Rousseau, N. Sadeghi, Eur. Phys. J. D 60, 555–563 (2010). https://doi.org/10.1140/epjd/e2010-00259-4

    Article  CAS  ADS  Google Scholar 

  15. A. Remigy, S. Kasri, T. Darny, H. Kabbara, W. Ludovic, G. Bauville, K. Gazeli, S. Pasquiers, S. Santos, N. De Oliveira, N. Sadeghi, G. Lombardi, C. Lazzaroni, J. Phys. D Appl. Phys. 55, 1052002 (2022). https://doi.org/10.1088/1361-6463/ac3c74

    Article  CAS  Google Scholar 

  16. A. Remigy, X. Aubert, S. Prasanna, K. Gazeli, L. Invernizzi, G. Lombardi, C. Lazzaroni, Phys. Plasmas 29, 113508 (2022). https://doi.org/10.1063/5.0110318

    Article  CAS  ADS  Google Scholar 

  17. D. Zhanga, Y. Wang, Y. Gan, Appl. Surface Sci. 274, 405–417 (2013). https://doi.org/10.1016/j.apsusc.2012.12.143

    Article  CAS  ADS  Google Scholar 

  18. N. Guo, J. Wei, Y. Jia, H. Sun, Y. Wang, K. Zhao, X. Shi, L. Zhang, W. Li, A. Cao, H. Zhu, K. Wang, D. Wu, Nano Res. 6(7), 602–610 (2013). https://doi.org/10.1007/s12274-013-0336-4

    Article  CAS  Google Scholar 

  19. S. Yamauchi, S. Doi, J. Wood Sci. 49, 227–234 (2003). https://doi.org/10.1007/s10086-002-0466-x

    Article  CAS  Google Scholar 

  20. Z. Zhang, Y. Liu, Y. Yang, B.I. Yakobson, Nano Lett. 16, 1398–1403 (2016). https://doi.org/10.1021/acs.nanolett.5b04874

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Y.Y. Stehle, X. Sang, R.R. Unocic, D. Voylov, R.K. Jackson, S. Smirnov, I. Vlassiouk, Nano Lett. 17(12), 7306–7314 (2017). https://doi.org/10.1021/acs.nanolett.7b02841

    Article  CAS  PubMed  ADS  Google Scholar 

  22. S. Sharma, G. Kalita, R. Vishwakarma, Z. Zulkifli, M. Tanemura, Nshkhgk. Sci. Rep. 5(10426), 8 (2015). https://doi.org/10.1038/srep10426

    Article  CAS  Google Scholar 

  23. V. Mankad, S.K. Gupta, P.K. Jha, N.N. Ovsyuk, G.A. Kachurin, J. Appl. Phys. 112, 054318–054328 (2012). https://doi.org/10.1063/1.4747933

    Article  CAS  ADS  Google Scholar 

  24. S. Hong, C.S. Lee, M.H. Lee, Y. Lee, K. Yeol Ma, G. Kim, S.I. Yoon, K. Ihm, K.J. Kim, T.J. Shin, S.W. Kim, E.C. Jeon, H. Jeon, J.Y. Kim, H.I. Lee, Z. Lee, A. Antidormi, S. Roche, M. Chhowalla, H. Shin, H. Shin, Nature 582, 511–514 (2020). https://doi.org/10.1038/s41586-020-2375-9

    Article  CAS  PubMed  ADS  Google Scholar 

  25. M. Weber, E. Coy, I. Iatsunskyi, L. Yate, P. Miele, M. Bechelany, CrystEngComm 19, 6089–6094 (2017). https://doi.org/10.1039/C7CE01357D

    Article  CAS  Google Scholar 

  26. M. Jacquemin, A. Remigy, V. Mille, M.L. Della Rocca, C. Barraud, C. Lazzaroni, Mater. Lett. 348, 134694 (2023). https://doi.org/10.1016/j.matlet.2023.134694

    Article  CAS  Google Scholar 

  27. J.M. Brown, S. Vishwakarma, D.J. Smith, R.J. Nemanich, J. Appl. Phys. 133, 215303–215310 (2023). https://doi.org/10.1063/5.0145771

    Article  CAS  ADS  Google Scholar 

  28. Z. Lu, Q. Yoa, H. Ying, T. Li, J. Zhang, L. Wang, Results Phys. 34, 105404 (2022). https://doi.org/10.1016/j.rinp.2022.105404

    Article  Google Scholar 

  29. J. Zhang, W. Zhoa, J. Zhu, Nanoscale 37(10), 17683–17690 (2018). https://doi.org/10.1039/C8NR04732D

    Article  Google Scholar 

  30. H. Quan, W. Wang, L. Zhang, N. Liu, S. Feng, Z. Chen, L. Hou, Q. Wang, X. Liu, J. Zhao, Y. Gao, G. Jia, Thin Solid Films 647, 90–95 (2017). https://doi.org/10.1016/j.tsf.2017.09.032

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the LABEX SEAM (Science and Engineering for Advanced Materials and devices), University Sorbonne Paris Nord and the French Research National Agency (DESYNIB Project, No. ANR-16CE08-0004 JCJC). We also would like to thank our colleagues from LSPM, MPQ, and LPGP laboratories.

Funding

This work was funded by Agence Nationale de la Recherche, ANR-16CE08-0004, Claudia Lazzaroni, Laboratoire d’Excellence SEAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lazzaroni.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquemin, M., Remigy, A., Menacer, B. et al. Amorphous and hexagonal boron nitride growth using bromide chemistry. MRS Communications 14, 63–68 (2024). https://doi.org/10.1557/s43579-023-00500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00500-9

Keywords

Navigation